Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

complementary split ring resonator
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 79)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Charernkiat Pochaiya ◽  
Srawouth Chandhaket ◽  
Prapan Leekul ◽  
Jhirat Mearnchu ◽  
Tanawut Tantisopharak ◽  
...  

<span>This paper presents a bandwidth enhancement of a dual-band bi-directional rectangular microstrip patch antenna. The novelty of this work lies in the modification of conventional rectangular microstip patch antenna by using the combination of two techniques: a complementary split ring resonator (CSRR) and a defected patch structure (DPS). The structure of antenna was studied and investigated via computer </span><span>simulation technology (CST). The dimension and position of CSRR on the ground plane was optimized to achieve dual bandwidth and bi-directional radiation pattern characteristics. In addition, the bandwidths were enhanced by defecting suitable shape incorporated in the microstrip patch. A prototype with overall dimension of 70.45×63.73 mm<sup>2</sup> has been fabricated on FR-4 substrate. To verify the proposed design, the impedance bandwidth, gain, and radiation patterns were carried out in measurements. The measured impedance bandwidths were respectively 560 MHz (3.08-3.64 GHz) and 950 GHz (4.64-5.59 GHz) while the measured gains of each bandwidth were respectively 4.28 dBi and 4.63 dBi. The measured radiation patterns were in good agreement with simulated ones. The proposed antenna achieves wide dual bandwidth and bi-directional radiation patterns performances. Consequently, it is a promising candidate for Wi-Fi or 5G communications in specific areas such as tunnel, corridor, or transit and rail.</span>


2021 ◽  
Vol 20 (3) ◽  
pp. 43-47
Author(s):  
Norsaidah Muhamad Nadzir ◽  
Mohamad Kamal A. Rahim ◽  
Noor Asniza Murad ◽  
Mohamed Himdi ◽  
Osman Ayop

This paper proposes multiple linear array millimeter wave MPAs that could operate at various frequencies depending on the angular rotation of the CSRR structure. The main contribution of this work is the range of frequencies of the linear array MPA found when the position of the CSRR structure is changed angularly. This is achieved by positioning the CSRR structure on the ground plane of the MPA and rotate it to an incremental of 22.5°. Computer Simulation Technology software is used to simulate the antenna designs. The performance of the antenna is evaluated against the single element millimeter wave MPA with similar angular rotation to the CSRR structure. The reflection coefficient graph shows at 0° rotation, the antenna has dual band performance at 26 GHz and 28 GHz. At 22.5° and 45° CSRR structure rotation, the antenna shows triple band performance with different operational frequencies and different polarization depending on the frequencies. Finally, at 67.5° CSRR structure rotation, the antenna now is operational only at 20 GHz frequency with horizontal polarization performance. Plus, the results between the single element MPA with circular CSSRR and the linear array MPA with circular CSRR shows similar behavior in which the rotation of the CSRR did not affect the antenna differently even with an increase of the number of elements. The millimeter wave MPA with CSRR angular rotation can be utilized in various applications as it covers multiple frequencies depending on the angle of rotation of the CSRR structure.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 348
Author(s):  
Matko Martinic ◽  
Tomislav Markovic ◽  
Adrijan Baric ◽  
Bart Nauwelaers

In this study, complementary split-ring resonator (CSRR) metamaterial structures are proposed for label-free dielectric spectroscopy of liquids in microplates. This novel combination of an array of sensors and microplates is readily scalable and thus offers a great potential for non-invasive, rapid, and label-free dielectric spectroscopy of liquids in large microplate arrays. The proposed array of sensors on a printed circuit board consists of a microstrip line coupled to four CSRRs in cascade with resonant frequencies ranging from 7 to 10 GHz, spaced around 1 GHz. The microwells were manufactured and bonded to the CSRR using polydimethylsiloxane, whose resonant frequency is dependent on a complex relative permittivity of the liquid loaded in the microwell. The individual microstrip lines with CSRRs were interconnected to the measurement equipment using two electronically controllable microwave switches, which enables microwave measurements of the 4 × 4 CSRR array using only a two-port measurement system. The 4 × 4 microwell sensor arrays were calibrated and evaluated using water-ethanol mixtures with different ethanol concentrations. The proposed measurement setup offers comparable results to ones obtained using a dielectric probe, confirming the potential of the planar sensor array for large-scale microplate experiments.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 480
Author(s):  
Minjia Gao ◽  
Tian Qiang ◽  
Yangchuan Ma ◽  
Junge Liang ◽  
Yanfeng Jiang

Due to the increasing number of diabetic patients, early monitoring of glucose levels is particularly important; therefore, glucose biosensors have attracted enormous attention from researchers. In this paper, we propose a glucose microwave biosensor based on RFID and achieve a non-contact measurement of the concentration of glucose solutions. The Reader is a complementary split-ring resonator (CSRR), and the Tag is comprised of a squared spiral capacitor (SSC). A polydimethylsiloxane microfluidic quantitative cavity with a volume of 1.56 μL is integrated on the Tag to ensure that the glucose solution can be accurately set to the sensitive area and fully contacted with the electromagnetic flux. Because the SSC exhibits different capacitances when it contacts glucose solutions of different concentrations, changing the resonant frequency of the CSRR, we can use the relationship to characterize the biosensing response. Measurement results show that bare CSRR and RFID-based biosensors have achieved sensitivities of 0.31 MHz/mg·dL−1 and 10.27 kHz/mg·dL−1, and detection limits of 13.79 mg/dL and 1.19 mg/dL, respectively, and both realize a response time of less than 1 s. Linear regression analysis of the abovementioned biosensors showed an excellent linear relationship. The proposed design provides a feasible solution for microwave biosensors aiming for the non-contact measurement of glucose concentration.


2021 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Faezeh Shanehsazzadeh ◽  
Nafise Azizi ◽  
Hosna Kazerooni Haghighat ◽  
Fatemeh Mashayekhi ◽  
Mehdi Fardmanesh

A novel, cost-effective, flexible microwave sensor is proposed to facilitate point-of-care testing (POCT) methods for medical diagnosis. The sensor is based on the complementary split-ring resonator (CSRR) to accurately measure the permittivity of biomaterials over a wide range of frequencies. This ability can be used to characterize various materials under test (MUT) such as blood, saliva, tissue samples, etc. The flexibility of the proposed sensor means that it can be used when the accessibility of the sample has technical difficulties, such as on curved surfaces. Firstly, the optimized structure and coupling to the readout transmission line are evaluated using finite element method (FEM) simulations. Then, the prototype of the optimized structure is fabricated on a thin polydimethylsiloxane (PDMS) substrate as a biocompatible economical polymer, and aluminium is carefully chosen for the fabrication of CSRR and readout parts. The proposed flexible sensor is tested and compared to conventional rigid CSRR sensors. The proposed structure withstood the different bending positions well, and also showed an improvement in the results for curved MUT.


Export Citation Format

Share Document