Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

fatty acid biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

1120
(FIVE YEARS 272)

H-INDEX

77
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 917
Author(s):  
Mónika Gönczi ◽  
Andrea Csemer ◽  
László Szabó ◽  
Mónika Sztretye ◽  
János Fodor ◽  
...  

Astaxanthin is a lipid-soluble carotenoid influencing lipid metabolism, body weight, and insulin sensitivity. We provide a systematic analysis of acute and chronic effects of astaxanthin on different organs. Changes by chronic astaxanthin feeding were analyzed on general metabolism, expression of regulatory proteins in the skeletal muscle, as well as changes of excitation and synaptic activity in the hypothalamic arcuate nucleus of mice. Acute responses were also tested on canine cardiac muscle and different neuronal populations of the hypothalamic arcuate nucleus in mice. Dietary astaxanthin significantly increased food intake. It also increased protein levels affecting glucose metabolism and fatty acid biosynthesis in skeletal muscle. Inhibitory inputs innervating neurons of the arcuate nucleus regulating metabolism and food intake were strengthened by both acute and chronic astaxanthin treatment. Astaxanthin moderately shortened cardiac action potentials, depressed their plateau potential, and reduced the maximal rate of depolarization. Based on its complex actions on metabolism and food intake, our data support the previous findings that astaxanthin is suitable for supplementing the diet of patients with disturbances in energy homeostasis.


Author(s):  
Rani Shinde ◽  
Vasanti Suvarna

Abstract: Since the early twentieth century, with the isolation of penicillin and streptomycin in the 1940s, the modern era of anti-infective drug development has gained momentum. Due to the enormous success of early drug discovery, many infectious diseases were successfully prevented & eradicated. However, this initial hope was wrongheaded, and pathogens evolved as a significant threat to human health. Drug resistance develops as a result of natural selection's relentless pressure, necessitating the identification of new drug targets and the creation of chemotherapeutics that bypass existing drug resistance mechanisms. Fatty acid biosynthesis (FAS) is a crucial metabolic mechanism for bacteria during their growth and development. Several crucial enzymes involved in this biosynthetic pathway have been identified as potential targets for new antibacterial agents. In Escherichia coli (E. coli), this pathway has been extensively investigated. The present review focuses on progress in the development of Kas A, Kas B, and Fab H inhibitors as mono-therapeutic antibiotics.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jishan Lin ◽  
Wenping Zhang ◽  
Xingtan Zhang ◽  
Xiaokai Ma ◽  
Shengcheng Zhang ◽  
...  

AbstractMacadamia is a high value nut crop that is recently domesticated, ideal for testing the effect of artificial selection. Here, we sequence the genome of Hawaiian cultivar ‘Kau’ and assemble into 794 Mb in 14 pseudo-chromosomes with 37,728 genes. Genome analysis reveals a whole-genome duplication event, occurred 46.8 million years ago. Gene expansions occurred in gene families involves in fatty acid biosynthesis. Gene duplication of MADS-Box transcription factors in proanthocyanidin biosynthesis are relevant for seed coat development. Genome re-sequencing of 112 accessions reveals the origin of Hawaiian cultivars from Mount Bauple in southeast Queensland in Australia. Selective sweeps are detected in macadamia cultivars, including genes involved in fatty acid biosynthesis, seed coat development, and heat stress response. Such strong effects of artificial selection in few generations reveals the genomic basis for ‘one-step operation’ for clonal crop domestication. The knowledge gained could accelerate domestication of new crops from wild species.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Khushman Taunk ◽  
Priscilla Porto-Figueira ◽  
Jorge A. M. Pereira ◽  
Ravindra Taware ◽  
Nattane Luíza da Costa ◽  
...  

The urinary volatomic profiling of Indian cohorts composed of 28 lung cancer (LC) patients and 27 healthy subjects (control group, CTRL) was established using headspace solid phase microextraction technique combined with gas chromatography mass spectrometry methodology as a powerful approach to identify urinary volatile organic metabolites (uVOMs) to discriminate among LC patients from CTRL. Overall, 147 VOMs of several chemistries were identified in the intervention groups—including naphthalene derivatives, phenols, and organosulphurs—augmented in the LC group. In contrast, benzene and terpenic derivatives were found to be more prevalent in the CTRL group. The volatomic data obtained were processed using advanced statistical analysis, namely partial least square discriminative analysis (PLS-DA), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) methods. This resulted in the identification of nine uVOMs with a higher potential to discriminate LC patients from CTRL subjects. These were furan, o-cymene, furfural, linalool oxide, viridiflorene, 2-bromo-phenol, tricyclazole, 4-methyl-phenol, and 1-(4-hydroxy-3,5-di-tert-butylphenyl)-2-methyl-3-morpholinopropan-1-one. The metabolic pathway analysis of the data obtained identified several altered biochemical pathways in LC mainly affecting glycolysis/gluconeogenesis, pyruvate metabolism, and fatty acid biosynthesis. Moreover, acetate and octanoic, decanoic, and dodecanoic fatty acids were identified as the key metabolites responsible for such deregulation. Furthermore, studies involving larger cohorts of LC patients would allow us to consolidate the data obtained and challenge the potential of the uVOMs as candidate biomarkers for LC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lynn G. Dover ◽  
Amy R. Thompson ◽  
Iain C. Sutcliffe ◽  
Vartul Sangal

The genus Corynebacterium encompasses many species of biotechnological, medical or veterinary significance. An important characteristic of this genus is the presence of mycolic acids in their cell envelopes, which form the basis of a protective outer membrane (mycomembrane). Mycolic acids in the cell envelope of Mycobacterium tuberculosis have been associated with virulence. In this study, we have analysed the genomes of 140 corynebacterial strains, including representatives of 126 different species. More than 50% of these strains were isolated from clinical material from humans or animals, highlighting the true scale of pathogenic potential within the genus. Phylogenomically, these species are very diverse and have been organised into 19 groups and 30 singleton strains. We find that a substantial number of corynebacteria lack FAS-I, i.e., have no capability for de novo fatty acid biosynthesis and must obtain fatty acids from their habitat; this appears to explain the well-known lipophilic phenotype of some species. In most species, key genes associated with the condensation and maturation of mycolic acids are present, consistent with the reports of mycolic acids in their species descriptions. Conversely, species reported to lack mycolic acids lacked these key genes. Interestingly, Corynebacterium ciconiae, which is reported to lack mycolic acids, appears to possess all genes required for mycolic acid biosynthesis. We suggest that although a mycolic acid-based mycomembrane is widely considered to be the target for interventions by the immune system and chemotherapeutics, the structure is not essential in corynebacteria and is not a prerequisite for pathogenicity or colonisation of animal hosts.


Author(s):  
Ertao Wang ◽  
Huiling Dai ◽  
Xiaowei Zhang ◽  
Boyu Zhao ◽  
Jincai Shi ◽  
...  

Arbuscular mycorrhizal (AM) fungi form a mutual association with the majority of land plants, including most angiosperms of the dicotyledon and monocotyledon lineages. The symbiosis is based upon bidirectional nutrient exchange between the host and symbiont that occurs between inner cortical cells of the root and branched AM hyphae called arbuscules that develop within these cells. Lipid transport and its regulation during the symbiosis have been intensively investigated in dicotyledon plants, especially legumes. Here, we characterize OsRAM2 and OsRAM2L, homologs of M. truncatula RAM2, and found that plants defective in OsRAM2 were unable to be colonized by AM fungi and showed impaired colonization by Magnaporthe oryzae. The induction of OsRAM2 and OsRAM2L is dependent on OsRAM1 and the CSSP pathway genes CCaMK and CYCLOPS, while overexpression of OsRAM1 results in increased expression of OsRAM2 and OsRAM2L. Collectively, our data show that the function and regulation of OsRAM2 is conserved in monocot and dicot plants and reveals that, similar to mutualistic fungi, pathogenic fungi have recruited RAM2-mediated fatty acid biosynthesis to facilitate invasion.


2021 ◽  
Vol 8 ◽  
Author(s):  
Baiyu Chen ◽  
Yalan Zhan ◽  
Miriam Kessi ◽  
Shimeng Chen ◽  
Juan Xiong ◽  
...  

Objective: The purpose of this study was to search for differential metabolites in urine organic acids, and to characterize metabolic features that can be used to identify metabolites for exploration of global developmental delay (GDD)/intellectual disability (ID) etiology and pathogenesis.Methods: We screened positive test results that could explain GDD/ID from 1,253 cases, and the major differential metabolites in 132 urine organic acids from the 1,230 cases with negative results (863 GDD cases, 367 ID cases), and 100 typically developing children (TD). Non-supervisory principal component analysis and orthogonal partial least squares discriminant analysis were used to develop models to distinguish GDD/ID from TD children, and to detect major differential metabolites.Results: We get 23 positive results that could identify the cause of GDD/ID from 1253 cases diagnosed with GDD/ID. Among 1,230 negative results, we get the differential metabolites of the GDD group and the ID group had the same trend compared with the TD group. Twenty four differential metabolites were obtained from the GDD group, and 25 from the ID group (VIP > 1.0, p < 0.01). These differential metabolites were mainly related to the following pathways: the synthesis and degradation of ketone bodies, citrate cycle, alanine, aspartate and glutamate metabolism, pyrimidine metabolism, butanoate metabolism, pyruvate metabolism, fatty acid biosynthesis, valine, leucine and isoleucine degradation.Conclusion: The use of metabolomics research methods to detect urine organic acids of children with GDD/ID can discover differential metabolites, which might be valuable for future research on the etiology, pathogenesis, prognosis and possible interventions of GDD/ID. The significantly altered differential metabolites indicators could therefore be potential diagnostic biomarkers for GDD/ID.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 3
Author(s):  
Xiaodong Tan ◽  
Lu Liu ◽  
Xiaojing Liu ◽  
Huanxian Cui ◽  
Ranran Liu ◽  
...  

Breast muscle weight (BrW) is one of the most important economic traits in chicken, and directional breeding for that results in both phenotypic and genetic changes. The Jingxing yellow chicken, including an original (without human-driven selection) line and a selected line (based on selection for increased intramuscular fat content), were used to dissect the genetic architecture and key variants associated with BrW. We detected 1069 high-impact single nucleotide polymorphisms (SNPs) with high conserved score and significant frequency difference between two lines. Based on the annotation result, the ECM-receptor interaction and fatty acid biosynthesis were enriched, and muscle-related genes, including MYOD1, were detected. By performing genome-wide association study for the BrW trait, we defined a major haplotype and two conserved SNPs that affected BrW. By integrated genomic and transcriptomic analysis, IGF2BP1 was identified as the crucial gene associated with BrW. In conclusion, these results offer a new insight into chicken directional selection and provide target genetic markers by which to improve chicken BrW.


Export Citation Format

Share Document