Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

neuronal regulation
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 24)

H-INDEX

36
(FIVE YEARS 2)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 257
Author(s):  
Khadidja Kessas ◽  
Zhor Chouari ◽  
Imen Ghzaiel ◽  
Amira Zarrouk ◽  
Mohamed Ksila ◽  
...  

Mitochondria are multifunctional organelles that participate in a wide range of metabolic processes, including energy production and biomolecule synthesis. The morphology and distribution of intracellular mitochondria change dynamically, reflecting a cell’s metabolic activity. Oxidative stress is defined as a mismatch between the body’s ability to neutralise and eliminate reactive oxygen and nitrogen species (ROS and RNS). A determination of mitochondria failure in increasing oxidative stress, as well as its implications in neurodegenerative illnesses and apoptosis, is a significant developmental process of focus in this review. The neuroprotective effects of bioactive compounds linked to neuronal regulation, as well as related neuronal development abnormalities, will be investigated. In conclusion, the study of secondary components and the use of mitochondrial features in the analysis of various neurodevelopmental diseases has enabled the development of a new class of mitochondrial-targeted pharmaceuticals capable of alleviating neurodegenerative disease states and enabling longevity and healthy ageing for the vast majority of people.


Author(s):  
Swalpa Udit ◽  
Kimbria Blake ◽  
Isaac M. Chiu

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Zhonghua Fang ◽  
Mao Zhang

An anisotropic diffusion filtering- (ADF-) ultrasound (ADF-U) for ultrasound reconstruction was constructed based on the ADF to explore the diagnostic application of ultrasound imaging based on electronic health (E-health) for cardiac insufficiency and neuronal regulation in patients with sepsis. The 144 patients with sepsis were divided into an experimental group (78 patients with cardiac insufficiency) and a control group (66 patients with normal cardiac function), and another 58 healthy people were included in a blank control. The ultrasound examination was performed on all patients. In addition, new ultrasound image reconstruction and diagnosis were performed based on ADF and E-health, and its reconstruction effects were compared with those of the Bilateral Filter-ultrasonic (BFU) algorithm and the Wavelet Threshold-ultrasonic (WTU) algorithm. The left and right ventricular parameters and neuropeptide levels were detected and recorded. The results show that the running time, average gradient (AG), and peak signal-to-noise ratio (SNR) (PSNR) of the ADF-U algorithm were greater than those of the Bilateral Filter-ultrasonic (BFU) and Wavelet Threshold-ultrasonic (WTU), but the mean square error (MSE) was opposite ( P < 0.05 ); the left ventricular end-systolic volume (LVESV) and the vertical distance between the mitral valve E-point to septal separation (EPSS) in the experimental group were higher than those in the control and blank group, while the left ventricular ejection fraction (LVEF), stroke volume (SV), cardiac output (CO), and left ventricular fractional shortening (LVFS) were opposite ( P < 0.05 ); the systolic peak velocity of right ventricular free wall tricuspid annulus (Sm) and pulmonary valve blood velocity (PVBV) in the experimental group were lower than those of the control group and blank group ( P < 0.05 ); the messenger ribonucleic acid (mRNA) of Proopiomelanocortin (POMC) and Cocain and amphetamine-regulated transcript (CART) was higher than the mRNA IN control group and blank group ( P < 0.05 ). In short, the ADF-U algorithm proposed in this study improved the resolution, SNR, and reconstruction efficiency of E-health ultrasound images and provided an effective reference value for the diagnosis of cardiac insufficiency and neuronal adjustment analysis in patients with sepsis in the emergency department.


2021 ◽  
Author(s):  
Hayriye Soytürk ◽  
Murat Yılmaz ◽  
Cansu Önal ◽  
Eylem Suveren ◽  
Ümit Kılıç

Circulation of cerebrospinal fluid (CSF) is a clear, colorless liquid that circulates between the ventricular system and the subarachnoid space. In addition to its function as a natural cushion for the brain, CSF provides the circulation of metabolic products, hormones, and neurotransmitters. Moreover, it has tasks such as maintaining the homeostatic balance of the central nervous system, protecting the brain against mechanical injuries, preventing direct contact of the brain with the extracellular region. It also has a role in maintaining cerebral interstitial fluid (ISF) homeostasis and neuronal regulation. Normal CSF production, its circulation, and absorption have a critical role for the development and functioning of the brain. In an average adult person, roughly 150 ml of CSF circulates at any given moment. The ventricular part accounts for about 17% of the total volume of fluid, with the rest located in the subarachnoid cisterns and space. CSF is produced at a rate of about 0.3–0.4 mL/min, translating to 18–25 mL/H and 430–530 mL/day.


2021 ◽  
Author(s):  
Ankita Sarkar ◽  
Malinki Sur ◽  
Puja Dey ◽  
Piyali Mukherjee

The NADase Sarm1 has emerged as an important modulator of programmed axonal degeneration over the past decade but its mode of activation within the cell is not clearly understood. Sarm1 is predominantly expressed in the neurons, kidney and liver but the non-neuronal regulation of Sarm1 remains relatively unexplored. Here we demonstrate that treatment of the human embryonic kidney cell line HEK293 cells with the mitochondrial complex I inhibitor rotenone, induced early loss of NAD+ that preceded induction of Sarm1, a primary mediator of rotenone induced cell death. Interestingly, replenishing NAD+ levels by PARP inhibition, a major NAD+ consumer within the cell, not only restored mitochondrial homeostasis but also prevented subsequent Sarm1 induction by rotenone. These early changes were further marked by a distinct subcellular localization pattern of Sarm1 in the nucleus and the mitochondria that was accompanied by significantly reduced cell death. Taken together, our study provides the first preliminary evidence of temporal regulation of endogenous Sarm1 by fluctuating NAD+ levels induced by rotenone that may act as a biological trigger of Sarm1 activation. This also points towards an important understanding on how PARP inhibitors like PJ34 could be repurposed in the treatment of Sarm1 mediated mitochondrial deficiency disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Manuel O. Jakob ◽  
Michael Kofoed-Branzk ◽  
Divija Deshpande ◽  
Shaira Murugan ◽  
Christoph S. N. Klose

The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation.


Physiology ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 246-255
Author(s):  
Heike Münzberg ◽  
Elizabeth Floyd ◽  
Ji Suk Chang

Obesity research progresses in understanding neuronal circuits and adipocyte biology to regulate metabolism. However, the interface of neuro-adipocyte interaction is less studied. We summarize the current knowledge of adipose tissue innervation and interaction with adipocytes and emphasize adipocyte transitions from white to brown adipocytes and vice versa. We further highlight emerging concepts for the differential neuronal regulation of brown/beige versus white adipocyte and the interdependence of both for metabolic regulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weiwei Chen ◽  
Dengming Lai ◽  
Yuehua Li ◽  
Xueke Wang ◽  
Yihang Pan ◽  
...  

BackgroundStudies have revealed important roles for IL-17A in the development of acute lung injury (ALI) following sepsis. However, the mechanism underlying the regulation of lung IL-17A remains to be fully addressed. Recent studies suggested the effect of neuromedin U (NMU) on immune cell activation and the role of group 2 innate lymphoid cells (ILC2s) in the modulation of IL-17A production. We aimed to gain in-depth insight into the mechanism underlying sepsis-induced lung IL-17A production, particularly, the role of NMU in mediating neuronal regulation of ILC2s and IL-17A-producing γδ T cells activation in sepsis.MethodsWild type mice were subjected to cecal ligation and puncture (CLP) to induce sepsis with or without intraperitoneal injection of NMU. The levels of ILC2s, γδ T cells, IL-17A, NMU and NMU receptor 1 (NMUR1) in the lung were then measured. In order to determine the role of NMU signaling in ILC2 activation and the role of ILC2-released IL-9 in ILC2-γδ T cell interaction, ILC2s were sorted, and the genes of nmur1 and il9 in the ILC2s were knocked down using CRISPR/Cas9. The genetically manipulated ILC2s were then co-cultured with lung γδ T cells, and the levels of IL-17A from co-culture systems were measured.ResultsIn septic mice, the levels of NMU, IL-17A, ILC2s, and IL-17A-producing γδ T cells in the lung are significantly increased, and the expression of NMUR1 in ILC2s is increased as well. Exogenous NMU further augments these increases. The main source of IL-17A in response to CLP is γδ T cells, and lung nmur1 is specifically expressed in ILC2s. In vitro co-culture of ILC2s and γδ T cells leads to increased number of γδ T cells and higher production of IL-17A from γδ T cells, and these alterations are further augmented by septic treatment and exogenous NMU. Genetic knockdown of nmur1 or il9 in ILC2s attenuated the upregulation of γδ T cells and IL-17A production.ConclusionIn sepsis, NMU acting through NMUR1 in lung ILC2s initiates the ILC2 activation, which, in turn, promote IL-17A-producing γδ T cell expansion and secretion of IL-17A. ILC2-derived IL-9 plays an important role in mediating γδ T cell expansion and IL-17A production. This study explores a new mechanism underlying neuronal regulation of innate immunity in sepsis.


Export Citation Format

Share Document