Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

seismic mass
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 0)

2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Ali Abdulsattar Hussein

Abstract This paper studies the construction of a compact one-dimension-sensing iscreased bandwidth photonic accelerometer using cascaded groups of continued sections of a 50 ng seismic mass each attached to the silicon beams of two under etched slot waveguide electrostatic phase shift elements acting as voltage-controlled adaptive-precision springs. The accelerometer sensitivity is shown to be significantly increased by applying equal electrode voltages. Simulation results indicate that the sensitivity dynamic range is about 76 dB combining both open-loop and closed-loop voltage control of the sensor. The operation bandwidth of the accelerometer may be increased up to 250 kHz due to the cascaded multi-section architecture of the sensor. This advantage gives significant relief to the limitation in bandwidth response of single section counterparts. The sensor may be designed to detect impact accelerations up to 104 ms−2 and yet can still be electrostatically driven to detect sub-gravitational accelerations. The application of negative feedback voltage control to hold the seismic mass at close distances from a standstill is shown to significantly increase the acceleration detection range. The construction uses all in-plane components based on a silicon-on-insulator template with 300 nm of silicon core thickness. The proposed electromechanical suspension system and the electric feeding arrangements are the most simple. The accelerometer performance is theoretically deterministic. The study is based on performing numerical analysis for the electromechanical suspension system. The waveguides are simulated utilizing the VPIphotonics industry standard. Applications may include the automobile and aerospace industries, underwater sonar, industrial ultrasonic detection, seismology predictions, and medical ultrasonography. Article Highlights The cascading of compact high-speed accelerometer sections allows increasing the bandwidth response of the proposed sensor by many folds compared to its single-mass single-section counterparts. The suspension structure is electrostatically controlled by two voltages enabling widely controlling the sensitivity and detection range of the accelerometer. The proposed accelerometer may fit wide applications achieving high detection speeds and super sensitivities utilizing a small footprint and power-efficient structure.


2021 ◽  
Vol 13 (17) ◽  
pp. 3421
Author(s):  
Christopher Gomez ◽  
Norifumi Hotta

On 6 September at 03:08AM local time, a 33 km deep earthquake underneath the Iburi mountains triggered more than 7000 co-seismic mass movements within 25 km of the epicenter. Most of the mass movements occurred in complex terrain and became coalescent. However, a total of 59 mass movements occurred as discrete events and stopped on the semi-horizontal valley floor. Using this case study, the authors aimed to define planar and vertical parameters to (1) compare the geometrical parameters with rain-triggered mass movements and (2) to extend existing datasets used for hazards and disaster risk purposes. To reach these objectives, the methodology relies on LiDAR data flown in the aftermath of the earthquake as well as aerial photographs. Using a Geographical Information System (GIS), planform and vertical parameters were extracted from the DEM in order to calculate the relationship between areas and volume, between the Fahrböschung and the volume of the deposits, and to discuss the relationship between the deposit slope surface and the effective stress of the deposit. Results have shown that the relation S=k[Vd]2/3 (where S is the surface area of a deposit and Vd the volume, and k a scalar that is function of S) is k = 2.1842ln(S) − 10.167 with a R2 of 0.52, with less variability in deposits left by valley-confined processes compared to open-slope processes. The Fahrböschung for events that started as valley-confined mass-movements was Fc = −0.043ln(D) + 0.7082, with a R2 of 0.5, while for open-slope mass-movements, the Fo = −0.046ln(D) + 0.7088 with a R2 of 0.52. The “T-values”, as defined by Takahashi (2014), are displaying values as high as nine times that of the values for experimental rainfall debris-flow, signifying that the effective stress is higher than in rain-triggered counterparts, which have an increased pore pressure due to the need for further water in the material to be moving. For co-seismic debris-flows and other co-seismic mass movements it is the ground acceleration that “fluidizes” the material. The maxima found in this study are as high as 3.75.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1072
Author(s):  
Xi Zuo ◽  
Li Chen ◽  
Wenjun Pan ◽  
Xingchen Ma ◽  
Tongqing Yang ◽  
...  

Fluorinated polyethylene propylene (FEP) bipolar ferroelectret films with a specifically designed concentric tunnel structure were prepared by means of rigid-template based thermoplastic molding and contact polarization. The properties of the fabricated films, including the piezoelectric response, mechanical property, and thermal stability, were characterized, and two kinds of energy harvesters based on such ferroelectret films, working in 33- and 31-modes respectively, were investigated. The results show that the FEP films exhibit significant longitudinal and radial piezoelectric activities, as well as superior thermal stability. A quasi-static piezoelectric d33 coefficient of up to 5300 pC/N was achieved for the FEP films, and a radial piezoelectric sensitivity of 40,000 pC/N was obtained in a circular film sample with a diameter of 30 mm. Such films were thermally stable at 120 °C after a reduction of 35%. Two types of vibrational energy harvesters working in 33-mode and 31-mode were subsequently designed. The results show that a power output of up to 1 mW was achieved in an energy harvester working in 33-mode at a resonance frequency of 210 Hz, referring to a seismic mass of 33.4 g and an acceleration of 1 g (g is the gravity of the earth). For a device working in 31-mode, a power output of 15 μW was obtained at a relatively low resonance frequency of 26 Hz and a light seismic mass of 1.9 g. Therefore, such concentric tunnel FEP ferroelectric films provide flexible options for designing vibrational energy harvesters working either in 33-mode or 31-mode to adapt to application environments.


2020 ◽  
Author(s):  
Jerome Woodwark ◽  
Marcel Stefko ◽  

<p>Data from the US and German Gravity Recovery And Climate Experiment (GRACE) showed indications of pre-, co-, and post-seismic mass redistributions associated with earthquakes down to a magnitude of 8.3 Mw. These demonstrated state-of-the-art capabilities in obtaining high spatial resolution space-based gravimetry, and helped to improve understanding of mantle rheology, potentially even providing a route to developing early warning capabilities for future seismic events. We describe a new mission concept, GRAvity observations by Vertical Laser ranging (GRAVL), which aims to extend the earthquake detection limit down to magnitude 6.5 Mw, significantly increasing the number of observable events.</p><p>GRAVL directly measures the radial component of the acceleration vector via “high-low” inter-satellite laser ranging, increasing gravity field sensitivity. A constellation of Low-Earth Orbit (LEO) satellites act as test masses, equipped with reflectors and high precision accelerometers to account for non-gravitational forces. Two or more larger satellites are placed above these, in Geostationary or Medium Earth Orbit (GEO / MEO), and measure the distance to the LEO satellites via time-of-flight measurement of a laser pulse. To do this, the GEO/MEO spacecraft are each equipped with a laser, telescope and detector, and additionally require highly  accurate timing systems to enable ranging accuracy down to sub-micron precision. To detect co-seismic mass redistribution events of the desired magnitude, we determine a gravity field measurement requirement of order 0.1 µGal at a spatial resolution of approximately 100 km over a 3-day revisit interval. These are challenging requirements, and we will discuss possible approaches to achieving them.</p><p>The GRAVL mission concept was developed during the FFG/ESA Alpbach Summer School 2019 by a team of science and engineering students, and further refined using the Concurrent Engineering approach during the Post-Alpbach Summer School Event at ESA Academy's Training and Learning Facility at ESEC-Galaxia in Belgium.</p>


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5155
Author(s):  
Hong Goo Yeo ◽  
Junhee Choi ◽  
Changzhu Jin ◽  
Seonghun Pyo ◽  
Yongrae Roh ◽  
...  

Underwater sensors that detect the distance and direction of acoustic sources are critical for surveillance monitoring and target detection in the water. Here, we propose an axial vector sensor that utilizes a small (~1 cm3) compressive-type piezoelectric accelerometer using piezoelectric single crystals. Initially, finite element analysis (FEA) was used to optimize the structure that comprised piezoelectric Pb(Mb1/3Nb2/3)O3-28%PbTiO3 single crystals on a tungsten seismic mass. The receiving voltage sensitivity (RVS) was enhanced through geometric optimization of the thickness and sensing area of the piezoelectric material and the seismic mass. The estimated maximum RVS of the optimized vector sensor was −212 dB. FEA simulations and practical measurements were used to verify the directivity of the vector sensor design, which exhibited a dipole pattern. The dipole beam pattern was used to obtain cardioid patterns using the simulated and measured results for comparison. The results clearly showed the feasibility of using the proposed piezoelectric single-crystal accelerometer for a compressive-type vector sensor.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2910 ◽  
Author(s):  
Rui-Jun Li ◽  
Ying-Jun Lei ◽  
Zhen-Xin Chang ◽  
Lian-Sheng Zhang ◽  
Kuang-Chao Fan

Low-frequency vibration is a harmful factor that affects the accuracy of micro/nano-measuring machines. Low-frequency vibration cannot be completely eliminated by passive control methods, such as the use of air-floating platforms. Therefore, low-frequency vibrations must be measured before being actively suppressed. In this study, the design of a low-cost high-sensitivity optical accelerometer is proposed. This optical accelerometer mainly comprises three components: a seismic mass, a leaf spring, and a sensing component based on a four-quadrant photodetector (QPD). When a vibration is detected, the seismic mass moves up and down due to the effect of inertia, and the leaf spring exhibits a corresponding elastic deformation, which is amplified by using an optical lever and measured by the QPD. Then, the acceleration can be calculated. The resonant frequencies and elastic coefficients of various seismic structures are simulated to attain the optimal detection of low-frequency, low-amplitude vibration. The accelerometer is calibrated using a homemade vibration calibration system, and the calibration experimental results demonstrate that the sensitivity of the optical accelerometer is 1.74 V (m·s−2)−1, the measurement range of the accelerometer is 0.003–7.29 m·s−2, and the operating frequencies range of 0.4–12 Hz. The standard deviation from ten measurements is under 7.9 × 10−4 m·s−2. The efficacy of the optical accelerometer in measuring low-frequency, low-amplitude dynamic responses is verified.


2018 ◽  
Vol 144 (8) ◽  
pp. 04018098
Author(s):  
Juan C. Reyes ◽  
Esteban Marcillo-Delgado ◽  
J. Paul Smith-Pardo ◽  
Oscar A. Ardila-Giraldo

2017 ◽  
Vol 16 ◽  
pp. 56-60
Author(s):  
Václav Píštěk ◽  
Pavel Kučera ◽  
David Svída ◽  
Martin Beran

Export Citation Format

Share Document