Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

gtpase activation
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 15)

H-INDEX

41
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Per Niklas Hedde ◽  
Barbara Barylko ◽  
Chi-Li Chiu ◽  
Joseph P Albanesi ◽  
David M Jameson ◽  
...  

Mutations in dynamin 2 (DNM2) have been associated with two distinct motor disorders, Charcot-Marie-Tooth neuropathies (CMT) and centronuclear myopathy (CNM). The majority of these mutations are clustered in the pleckstrin homology domain (PHD) which engage in intramolecular interactions that suppress dynamin self-assembly and GTPase activation. CNM mutations in the PHD interferes with these intramolecular interactions, thereby blocking the formation of the auto-inhibited state. CMT mutations are located primarily on the opposite surface of the PHD, which is specialized for lipid PIP2 binding. It has been speculated that the distinct locations and interactions of residues mutated in CMT and CNM explain why each set of mutations cause either one disease or the other, despite their close proximity within the PHD sequence. We show that at least one CMT-causing mutant, lacking residues 555DEE557 (∆DEE), displays this inability to undergo auto-inhibition as observed in CNM-linked mutants. This ∆DEE deletion mutant induces the formation of abnormally large cytoplasmic inclusions similar to those observed for CNM-linked mutant R369W. We also found substantially reduced migration from the membrane of the ∆DEE deletion mutant. These findings call into question the molecular mechanism currently believed to underlie the absence of pathogenic overlap between DNM2-dependent CMT and CNM.


Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 689
Author(s):  
Naeun Yoon ◽  
Hyunbeom Lee ◽  
Geonhee Lee ◽  
Eun Hye Kim ◽  
Seong Hwan Kim ◽  
...  

Zinc plays a pivotal role in the function of cells and can induce apoptosis in various cancer cells, including Raji B lymphoma. However, the metabolic mechanism of Zn-induced apoptosis in Raji cells has not been explored. In this study, we performed global metabolic profiling using UPLC−Orbitrap−MS to assess the apoptosis of Raji cells induced by Zn ions released from ZnO nanorods. Multivariate analysis and database searches identified altered metabolites. Furthermore, the differences in the phosphorylation of 1380 proteins were also evaluated by Full Moon kinase array to discover the protein associated Zn−induced apoptosis. From the results, a prominent increase in glycerophosphocholine and fatty acids was observed after Zn ion treatment, but only arachidonic acid was shown to induce apoptosis. The kinase array revealed that the phosphorylation of p53, GTPase activation protein, CaMK2a, PPAR−γ, and PLA−2 was changed. From the pathway analysis, metabolic changes showed earlier onset than protein signaling, which were related to choline metabolism. LC−MS analysis was used to quantify the intracellular choline concentration, which decreased after Zn treatment, which may be related to the choline consumption required to produce choline-containing metabolites. Overall, we found that choline metabolism plays an important role in Zn-induced Raji cell apoptosis.


2021 ◽  
Vol 220 (9) ◽  
Author(s):  
Ann-Christin Borchers ◽  
Lars Langemeyer ◽  
Christian Ungermann

The eukaryotic endomembrane system consists of multiple interconnected organelles. Rab GTPases are organelle-specific markers that give identity to these membranes by recruiting transport and trafficking proteins. During transport processes or along organelle maturation, one Rab is replaced by another, a process termed Rab cascade, which requires at its center a Rab-specific guanine nucleotide exchange factor (GEF). The endolysosomal system serves here as a prime example for a Rab cascade. Along with endosomal maturation, the endosomal Rab5 recruits and activates the Rab7-specific GEF Mon1-Ccz1, resulting in Rab7 activation on endosomes and subsequent fusion of endosomes with lysosomes. In this review, we focus on the current idea of Mon1-Ccz1 recruitment and activation in the endolysosomal and autophagic pathway. We compare identified principles to other GTPase cascades on endomembranes, highlight the importance of regulation, and evaluate in this context the strength and relevance of recent developments in in vitro analyses to understand the underlying foundation of organelle biogenesis and maturation.


Author(s):  
Melody A. Cobleigh ◽  
Matthew Najor ◽  
Satnam Brar ◽  
Sanja Turturro ◽  
Liam Portt ◽  
...  

Author(s):  
Julien Viaud ◽  
Laurie Ceccato ◽  
Bernard Payrastre ◽  
Frédérique Gaits-Iacovoni
Keyword(s):  

2020 ◽  
Vol 11 ◽  
Author(s):  
Mazen Alazem ◽  
Meng-Hsun He ◽  
Chih-Hao Chang ◽  
Ning Cheng ◽  
Na-Sheng Lin

Viruses hijack various organelles and machineries for their replication and movement. Ever more lines of evidence indicate that specific nuclear factors are involved in systemic trafficking of several viruses. However, how such factors regulate viral systemic movement remains unclear. Here, we identify a novel role for Nicotiana benthamiana high mobility group nucleoprotein (NbHMG1/2a) in virus movement. Although infection of N. benthamiana with Bamboo mosaic virus (BaMV) decreased NbHMG1/2a expression levels, nuclear-localized NbHMG1/2a protein was shuttled out of the nucleus into cytoplasm upon BaMV infection. NbHMG1/2a knockdown or even overexpression did not affect BaMV accumulation in inoculated leaves, but it did enhance systemic movement of the virus. Interestingly, the positive regulator Rap-GTPase activation protein 1 was highly upregulated upon infection with BaMV, whereas the negative regulator thioredoxin h protein was greatly reduced, no matter if NbHMG1a/2a was silenced or overexpressed. Our findings indicate that NbHMG1/2a may have a role in plant defense responses. Once its homeostasis is disrupted, expression of relevant host factors may be perturbed that, in turn, facilitates BaMV systemic movement.


Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. 819-823 ◽  
Author(s):  
Guy Wachsman ◽  
Jingyuan Zhang ◽  
Miguel A. Moreno-Risueno ◽  
Charles T. Anderson ◽  
Philip N. Benfey

In Arabidopsis thaliana, lateral roots initiate in a process preceded by periodic gene expression known as the root clock. We identified the vesicle-trafficking regulator GNOM and its suppressor, ADENOSINE PHOSPHATE RIBOSYLATION FACTOR GTPase ACTIVATION PROTEIN DOMAIN3, as root clock regulators. GNOM is required for the proper distribution of pectin, a mediator of intercellular adhesion, whereas the pectin esterification state is essential for a functional root clock. In sites of lateral root primordia emergence, both esterified and de-esterified pectin variants are differentially distributed. Using a reverse-genetics approach, we show that genes controlling pectin esterification regulate the root clock and lateral root initiation. These results indicate that the balance between esterified and de-esterified pectin states is essential for proper root clock function and the subsequent initiation of lateral root primordia.


2020 ◽  
Vol 2020 ◽  
pp. 1-1
Author(s):  
Ji Zhang ◽  
Xuheng Jiang ◽  
Chao Zhang ◽  
Jun Zhong ◽  
Xuanyu Fang ◽  
...  


2020 ◽  
Author(s):  
Aaron M.N. Joiner ◽  
J. Christopher Fromme

AbstractThe first stage of the eukaryotic secretory pathway is the packaging of cargo proteins into COPII vesicles exiting the endoplasmic reticulum (ER). The cytoplasmic COPII vesicle coat machinery is recruited to the ER membrane by the activated, GTP-bound, form of the conserved Sar1 GTPase. Activation of Sar1 on the surface of the ER by Sec12, a membrane-anchored GEF (guanine nucleotide exchange factor), is therefore the initiating step of the secretory pathway. Here we report the structure of the complex between Sar1 and the cytoplasmic GEF domain of Sec12, both from Saccharomyces cerevisiae. This structure, representing the key nucleotide-free activation intermediate, reveals how the potassium ion-binding K-loop disrupts the nucleotide binding site of Sar1. We describe an unexpected orientation of the GEF domain relative to the membrane surface and propose a mechanism for how Sec12 facilitates membrane insertion of the amphipathic helix exposed by Sar1 upon GTP-binding.


Export Citation Format

Share Document