The aim of this study was to investigate the feasibility of using sewage sludge (SS) biosolids as a low-cost soil fertilizer to improve soil characteristics and crop yields. Okra (Abelmoschus esculentus (L.) Moench) plants were grown in soil supplemented with different concentrations of SS (0, 10, 20, 30, 40, and 50 g/kg). The results showed that SS soil application led to improved soil quality with a 93% increase of organic matter (at SS dose of 10 g/kg), decreased pH (a reduction from 8.38 to 7.34), and enhanced macro- and micro- nutrient contents. The levels of all the investigated heavy metals (HMs; Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the postharvest SS-amended soil were within the prescribed safe limits. The application of SS to soil considerably enhanced the growth parameters of okra plants. Total biomass increased 13-fold and absolute growth rate increased 10-fold compared to plants grown in nonamended (control) soils. Among the applied SS doses, the 10 g/kg SS dose led to the highest values of the measured growth parameters, compared to those of plants grown in control soils. The induced growth at 10 g/kg SS was accompanied by a substantial increase in metal content in roots, stems, leaves, and fruits; however, all levels remained within safe limits. Consequently, the data presented in this study suggest that SS could be used as a sustainable organic fertilizer, also serving as an ecofriendly method of SS recycling.