Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

fluid shear
Recently Published Documents


TOTAL DOCUMENTS

1069
(FIVE YEARS 122)

H-INDEX

96
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Neha Paddillaya ◽  
Kalyani Ingale ◽  
Chaitanya Gaikwad ◽  
Deepak Kumar Saini ◽  
Pramod A Pullarkat ◽  
...  

The adhesion of cells to substrates occurs via integrin clustering and binding to the actin cytoskeleton. Oncogenes modify anchorage-dependent mechanisms in cells during cancer progression. Fluid shear devices provide a label-free, non-invasive way to characterize cell-substrate interactions and heterogeneities in the cell populations. We quantified the critical adhesion strengths of MCF7, MDAMB-231, A549, HPL1D, HeLa, and NIH3T3 cells using a custom fluid shear device. The detachment response was sigmoidal for each cell type. A549 and MDAMB-231 cells had significantly lower adhesion strengths at τ50 than their non-invasive counterparts, HPL1D and MCF7. Detachment dynamics was inversely correlated with cell invasion potentials. A theoretical model, based on τ50 values and the distribution of cell areas on substrates, provided good fits to data from de-adhesion experiments. Quantification of cell tractions, using the Reg-FTTC method on 10 kPa polyacrylamide gels, showed highest values for invasive, MDAMB-231 and A549, cells compared to non-invasive cells. Immunofluorescence studies show differences in vinculin distributions: non-invasive cells have distinct vinculin puncta, whereas invasive cells have more dispersed distributions. The cytoskeleton in non-invasive cells was devoid of well-developed stress fibers, and had thicker cortical actin bundles in the boundary. These correlations in adhesion strengths with cell invasiveness, demonstrated here, may be useful in cancer diagnostics and other pathologies featuring misregulation in adhesion.


Author(s):  
YUQING XIA ◽  
Pahala Jayathilake ◽  
Bowen Li ◽  
Paolo Zuliani ◽  
David Deehan ◽  
...  

The deformation and detachment of bacterial biofilm are related to the structural and mechanical properties of the biofilm itself. Extracellular polymeric substances (EPS) play an important role on keeping the mechanical stability of biofilms. The understanding of biofilm mechanics and detachment can help to reveal biofilm survival mechanisms under fluid shear and provide insight about what flows might be needed to remove biofilm in a cleaning cycle or for a ship to remove biofilms. However, how the EPS may affect biofilm mechanics and its deformation in flow conditions remains elusive. To address this, a coupled computational fluid dynamic – discrete element method (CFD-DEM) model was developed. The mechanisms of biofilm detachment, such as erosion and sloughing have been revealed by imposing hydrodynamic fluid flow at different velocities and loading rates. The model, which also allows adjustment of the proportion of different functional group of microorganisms in the biofilm, enables the study of the contribution of EPS towards biofilm resistance to fluid shear stress. Furthermore, the stress-strain curves during biofilm deformation have been captured by loading and unloading fluid shear stress to study the viscoelastic properties of the biofilm.


Author(s):  
Nishanthi Rajkamal ◽  
Srikanth Vedantam

We present a dissipative particle dynamics (DPD) study of the deformation of capsules in microchannels. The strain in the membrane during this deformation causes the formation of temporary pores, which is termed mechanoporation. Mechanoporation is being considered as a means by which intracellular delivery of a broad range of cargo can be facilitated. In this work, we examine the strain distribution on the capsule membrane during transport of the capsule in converging-diverging microchannels of different constriction widths. The pore density is correlated to the strain in the membrane. We find that the highest strains and, consequently, the highest pore densities occur at intermediate channel widths. This occurs due to a competition of the bending of the membrane and fluid shear stresses in the flow.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiao Zhang ◽  
Yan Gao ◽  
Bo Huo

Fluid shear stress (FSS) plays a crucial role for cell migration within bone cavities filled with interstitial fluid. Whether the local wall FSS distribution on cell surface depends on the global gradient FSS of flow field should be clarified to explain our previous experimental observation. In this study, finite element models of discretely distributed or hexagonal closely packed cells adherent on the bottom plate in a modified plate flow chamber with different global FSS gradient were constructed. Fluid-solid coupling simulation of wall fluid shear stress on cells was performed, and two types of data analysis methods were used. The results showed that the profile of local FSS distribution on cell surface coincides with the angle of cell migration determined in the previous study, suggesting that RAW264.7 osteoclast precursors may sense the global FSS gradient and migrate toward the low-FSS region under a high gradient. For hexagonal closely packed cells, this profile on the surface of central cells decreased along with the increase of cell spacing, which may be caused by the higher local FSS difference along the direction of FSS gradient in the regions close to the bottom plate. This study may explain the phenomenon of the targeted migration of osteoclast precursors under gradient FSS field and further provide insights into the mechanism of mechanical stimulation-induced bone remodeling.


2021 ◽  
Vol 17 (12) ◽  
pp. 2477-2484
Author(s):  
Guozhong Pan ◽  
Shiwei Yang ◽  
Xiaowan Han ◽  
Jing Xie ◽  
Chunyan Li ◽  
...  

The atherosclerosis (AS) microenvironment plays an important role in pathogenicity, including blood flow and blood pressure, high cholesterol, high blood sugar, angiotensin II, tumor necrosis factor, and the like. The AS microfluidic model was established, and the fluid shear stress and cyclic stretching were set to 5.07 Pa and 1.17 Hz to simulate normal blood flow, respectively. The effects of different biochemical environments on endothelial cells (ECs) and cardiomyocytes were analyzed. The results confirmed that different biochemical environments had significant damage to ECs and cardiomyocytes. Subsequently, the further effect of ECs on cardiomyocytes in AS microenvironment was studied, and the results proved that ECs caused further damage to cardiomyocytes under AS biochemical factors. We used Pt nanoparticles (Pt NPs) to study the anti-AS efficiency. The results showed that the addition of Pt NPs played a particular role in the AS treatment of ECs in the AS microenvironment, and the protection for myocardial cells was achieved.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Dan Li ◽  
Longtao Liu ◽  
Shengjie Yang ◽  
Yanwei Xing ◽  
Limin Pan ◽  
...  

Background. Coronary heart disease (CHD) seriously affects human health, and its pathogenesis is closely related to atherosclerosis. The Huzhang (the root of Polygonum cuspidatum)–Shanzha (the fruit of Crataegus sp.), a classic herb pair, has been widely used for the treatment of CHD. In recent years, Huzhang–Shanzha herb pair (HSHP) was found to have a wide range of effects in CHD; however, its therapeutic specific mechanisms remain to be further explored. The aim of this study was to elucidate the molecular mechanism of HSHP in the treatment of CHD using a network pharmacology analysis approach. Methods. The Batman-TCM database was used to explore bioactive compounds and corresponding targets of HSHP. CHD disease targets were extracted from Genecards, OMIM, PharmGkb, TTD, and DrugBank databases. Then, the protein-protein interaction (PPI) network was constructed using the STRING web platform and Cytoscape software. GO functional and KEGG pathway enrichment analyses were carried out on the Metascape web platform. Finally, molecular docking of the active components was assessed to verify the potential targets of HSHP to treat CHD by the AutoDock Vina and PyMOL software. Results. Totally, 243 active components and 2459 corresponding targets of LDP were screened out. Eighty-five common targets of HSHP and CHD were identified. The results of the network analysis showed that resveratrol, anthranone, emodin, and ursolic acid could be defined as four therapeutic components. TNF, ESR1, NFКB1, PPARG, INS, TP53, NFКBIA, AR, PIK3R1, PIK3CA, PTGS2, and NR3C1 might be the 12 key targets. These targets were mainly involved in the regulation of biological processes, such as inflammatory responses and lipid metabolism. Enrichment analysis showed that the identified genes were mainly involved in fluid shear force, insulin resistance (IR), inflammation, and lipid metabolism pathways to contribute to CHD. This suggests that resveratrol, anthranone, emodin, and ursolic acid from HSHP can be the main therapeutic components of atherosclerosis. Conclusion. Using network pharmacology, we provide new clues on the potential mechanism of action of HSHP in the treatment of CHD, which may be closely related to the fluid shear force, lipid metabolism, and inflammatory response.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Sujuan Duan ◽  
Yingjie Li ◽  
Yanyan Zhang ◽  
Xuan Zhu ◽  
Yan Mei ◽  
...  

Purpose. Corneal endothelial cells are usually exposed to shear stress caused by the aqueous humour, which is similar to the exposure of vascular endothelial cells to shear stress caused by blood flow. However, the effect of fluid shear stress on corneal endothelial cells is still poorly understood. The purpose of this study was to explore whether the shear stress that results from the aqueous humour influences corneal endothelial cells. Methods. An in vitro model was established to generate fluid flow on cells, and the effect of fluid flow on corneal endothelial cells after exposure to two levels of shear stress for different durations was investigated. The mRNA and protein expression of corneal endothelium-related markers in rabbit corneal endothelial cells was evaluated by real-time PCR and western blotting. Results. The expression of the corneal endothelium-related markers ZO-1, N-cadherin, and Na+-K+-ATPase in rabbit corneal endothelial cells (RCECs) was upregulated at both the mRNA and protein levels after exposure to shear stress. Conclusion. This study demonstrates that RCECs respond favourably to fluid shear stress, which may contribute to the maintenance of corneal endothelial cell function. Furthermore, this study also provides a theoretical foundation for further investigating the response of human corneal endothelial cells to the shear stress caused by the aqueous humour.


Author(s):  
Shashi Kant ◽  
Khanh-Van Tran ◽  
Miroslava Kvandova ◽  
Amada D. Caliz ◽  
Hyung-Jin Yoo ◽  
...  

Objective: Fluid shear stress (FSS) is known to mediate multiple phenotypic changes in the endothelium. Laminar FSS (undisturbed flow) is known to promote endothelial alignment to flow, which is key to stabilizing the endothelium and rendering it resistant to atherosclerosis and thrombosis. The molecular pathways responsible for endothelial responses to FSS are only partially understood. In this study, we determine the role of PGC1α (peroxisome proliferator gamma coactivator-1α)-TERT (telomerase reverse transcriptase)-HMOX1 (heme oxygenase-1) during shear stress in vitro and in vivo. Approach and Results: Here, we have identified PGC1α as a flow-responsive gene required for endothelial flow alignment in vitro and in vivo. Compared with oscillatory FSS (disturbed flow) or static conditions, laminar FSS (undisturbed flow) showed increased PGC1α expression and its transcriptional coactivation. PGC1α was required for laminar FSS-induced expression of TERT in vitro and in vivo via its association with ERRα(estrogen-related receptor alpha) and KLF (Kruppel-like factor)-4 on the TERT promoter. We found that TERT inhibition attenuated endothelial flow alignment, elongation, and nuclear polarization in response to laminar FSS in vitro and in vivo. Among the flow-responsive genes sensitive to TERT status, HMOX1 was required for endothelial alignment to laminar FSS. Conclusions: These data suggest an important role for a PGC1α-TERT-HMOX1 axis in the endothelial stabilization response to laminar FSS.


2021 ◽  
Author(s):  
Lingzhi Jing ◽  
Suna Fan ◽  
Xiang Yao ◽  
Yaopeng Zhang

Abstract Bone tissue with strong adaptability is often in a complex dynamical microenvironment in vivo, which is associated with the pathogenesis and treatment of orthopedic diseases. Therefore, it is of great significance to investigate the effects of corresponding compound stimulation on cell behaviors. Herein, a fluid shear stress (FSS) plus ultrasound stimulation platform suitable for cell studies based on a microfluidic chip was constructed and bone marrow mesenchymal stem cell (BMSC) was chosen as a model cell. The proliferation and osteogenesis of BMSCs under the compound stimulation of FSS plus ultrasound in growth medium without any soluble induction factors were firstly investigated. Single FSS stimulation and static culture conditions were also examined. Results illustrated that suitable single FSS stimulation (about 0.06 dyn/cm2) could significantly enhance cell proliferation and osteogenesis simultaneously when compare to the static control, while greater FSS mitigated or even restricted these enhancing effects. Interestingly, ultrasound stimulation combined with this suitable FSS stimulation further accelerated cell proliferation as the intensity of ultrasound increasing. As for the osteogenesis under compound stimulation, it was relatively restricted under lower ultrasound intensity (about 0.075 W/cm2), while promoted when the intensity became higher (about 1.75W/cm2). This study suggests that both the cell proliferation and osteogenesis are very responsive to the magnitudes of FSS and ultrasound stimulations and can be both significantly enhanced by proper combination strategies. Moreover, these findings will provide valuable references for the construction of effective cell bioreactors and also the treatment of orthopedic diseases.


Export Citation Format

Share Document