Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

rice genome
Recently Published Documents


TOTAL DOCUMENTS

534
(FIVE YEARS 103)

H-INDEX

57
(FIVE YEARS 3)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Xiong Yuan ◽  
Zirong Li ◽  
Liwen Xiong ◽  
Sufeng Song ◽  
Xingfei Zheng ◽  
...  

Abstract Background Plant variety identification is the one most important of agricultural systems. Development of DNA marker profiles of released varieties to compare with candidate variety or future variety is required. However, strictly speaking, scientists did not use most existing variety identification techniques for “identification” but for “distinction of a limited number of cultivars,” of which generalization ability always not be well estimated. Because many varieties have similar genetic backgrounds, even some essentially derived varieties (EDVs) are involved, which brings difficulties for identification and breeding progress. A fast, accurate variety identification method, which also has good performance on EDV determination, needs to be developed. Results In this study, with the strategy of “Divide and Conquer,” a variety identification method Conditional Random Selection (CRS) method based on SNP of the whole genome of 3024 rice varieties was developed and be applied in essentially derived variety (EDV) identification of rice. CRS is a fast, efficient, and automated variety identification method. Meanwhile, in practical, with the optimal threshold of identity score searched in this study, the set of SNP (including 390 SNPs) showed optimal performance on EDV and non-EDV identification in two independent testing datasets. Conclusion This approach first selected a minimal set of SNPs to discriminate non-EDVs in the 3000 Rice Genome Project, then united several simplified SNP sets to improve its generalization ability for EDV and non-EDV identification in testing datasets. The results suggested that the CRS method outperformed traditional feature selection methods. Furthermore, it provides a new way to screen out core SNP loci from the whole genome for DNA fingerprinting of crop varieties and be useful for crop breeding.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Eid I. Ibrahim ◽  
Kotb A. Attia ◽  
Abdelhalim I. Ghazy ◽  
Kimiko Itoh ◽  
Fahad N. Almajhdi ◽  
...  

Small ubiquitin-related modifier (SUMO) regulates the cellular function of diverse proteins through post-translational modifications. The current study defined a new homolog of SUMO genes in the rice genome and named it OsSUMO7. Putative protein analysis of OsSUMO7 detected SUMOylation features, including di-glycine (GG) and consensus motifs (ΨKXE/D) for the SUMOylation site. Phylogenetic analysis demonstrated the high homology of OsSUMO7 with identified rice SUMO genes, which indicates that the OsSUMO7 gene is an evolutionarily conserved SUMO member. RT-PCR analysis revealed that OsSUMO7 was constitutively expressed in all plant organs. Bioinformatic analysis defined the physicochemical properties and structural model prediction of OsSUMO7 proteins. A red fluorescent protein (DsRed), fused with the OsSUMO7 protein, was expressed and localized mainly in the nucleus and formed nuclear subdomain structures. The fusion proteins of SUMO-conjugating enzymes with the OsSUMO7 protein were co-expressed and co-localized in the nucleus and formed nuclear subdomains. This indicated that the OsSUMO7 precursor is processed, activated, and transported to the nucleus through the SUMOylation system of the plant cell.


2021 ◽  
Author(s):  
Fangfang Huang ◽  
Yingru Jiang ◽  
Tiantian Chen ◽  
Haoran Li ◽  
Mengjia Fu ◽  
...  

Abstract As a major food crop and model organism, rice has been mostly studied with the largest number of functionally characterized genes among all crops. We previously built the funRiceGenes database including ∼2800 functionally characterized rice genes and ∼5000 members of different gene families. Since being published, the funRiceGenes database has been accessed by more than 49,000 users with over 490,000 page views. The funRiceGenes database has been continuously updated with newly cloned rice genes and newly published literature, based on the progress of rice functional genomics studies. Up to Nov 2021, ≥4100 functionally characterized rice genes and ∼6000 members of different gene families were collected in funRiceGenes, accounting for 22.3% of the 39,045 annotated protein-coding genes in the rice genome. Here, we summarized the update of the funRiceGenes database with new data and new features in the last five years.


2021 ◽  
Author(s):  
Zhenfei Sun ◽  
Yunlong Wang ◽  
Zhaojian Song ◽  
Hui Zhang ◽  
Min Ma ◽  
...  

Polyploidy serves as a major force in plant evolution and domestication of cultivated crops. However, the relationship and underlying mechanism between three-dimensional (3D) chromatin organization and gene expression upon rice genome duplication is largely unknown. Here we compared the 3D chromatin structures between diploid (2C) and autotetraploid (4C) rice by high-throughput chromosome conformation capture analysis, and found that 4C rice presents weakened intra-chromosomal interactions compared to its 2C progenitor. Moreover, we found that changes of 3D chromatin organizations including chromatin compartments, topologically associating domain (TAD) and loops uncouple from gene expression. Moreover, DNA methylations in the regulatory sequences of genes in compartment A/B switched regions and TAD boundaries are not related to their expressions. Importantly, in contrast to that there was no significant difference of methylation levels in TEs in promoters of differentially expressed genes (DEGs) and non-DEGs between 2C and 4C rice, we found that the hypermethylated transposable elements across genes in compartment A/B switched regions and TAD boundaries suppress the expression of these genes. We propose that the rice genome doubling might modulate TE methylation which results in the disconnection between the alteration of 3D chromatin structure and gene expression.


2021 ◽  
Author(s):  
Magdy Mahfouz ◽  
Haroon Butt ◽  
Jose Luis Moreno Ramirez

Synthetic directed evolution via localized sequence diversification and the simultaneous application of selection pressure is a promising method for producing new, beneficial alleles that affect traits of interest in diverse species; however, this technique has rarely been applied in plants. Developing systems to induce localized sequence diversification at high efficiency will expand our ability to evolve traits of interest that improve global food security. In this study, we designed, built, and tested a chimeric fusion of T7 RNA Polymerase (RNAP) and deaminase to enable the localized sequence diversification of a target sequence of interest. We tested our T7 RNAP-DNA base editor in Nicotiana benthamiana transient assays to target a transgene expressing GFP under the control of the T7 promoter. More than 7% of C nucleotides were converted to T in long segments of the GFP sequence. We then targeted the T7 promoter-driven ACETOLACTATE SYNTHASE (ALS) sequence that had been stably integrated into the rice (Oryza sativa) genome and generated C-to-T and G-to-A transitions. We used herbicide treatment as a selection pressure for the evolution of the ALS sequence, resulting in the enrichment of herbicide-responsive residues. We then targeted these herbicide-responsive regions in the rice genome using a CRISPR-directed evolution platform and identified herbicide-resistant ALS variants. Thus, our system could be used for the continuous synthetic evolution of gene functions to produce variants with improved herbicide resistance, as well as for other trait engineering applications.


Author(s):  
Shuen-Fang Lo ◽  
Jolly Chatterjee ◽  
Akshaya K. Biswal ◽  
I.-Lun Liu ◽  
Yu-Pei Chang ◽  
...  

Abstract Key message Elevated expression of nucleotide-binding and leucine-rich repeat proteins led to closer vein spacing and higher vein density in rice leaves. Abstract To feed the growing global population and mitigate the negative effects of climate change, there is a need to improve the photosynthetic capacity and efficiency of major crops such as rice to enhance grain yield potential. Alterations in internal leaf morphology and cellular architecture are needed to underpin some of these improvements. One of the targets is to generate a “Kranz-like” anatomy in leaves that includes decreased interveinal spacing close to that in C4 plant species. As C4 photosynthesis has evolved from C3 photosynthesis independently in multiple lineages, the genes required to facilitate C4 may already be present in the rice genome. The Taiwan Rice Insertional Mutants (TRIM) population offers the advantage of gain-of-function phenotype trapping, which accelerates the identification of rice gene function. In the present study, we screened the TRIM population to determine the extent to which genetic plasticity can alter vein density (VD) in rice. Close vein spacing mutant 1 (CVS1), identified from a VD screening of approximately 17,000 TRIM lines, conferred heritable high leaf VD. Increased vein number in CVS1 was confirmed to be associated with activated expression of two nucleotide-binding and leucine-rich repeat (NB-LRR) proteins. Overexpression of the two NB-LRR genes individually in rice recapitulates the high VD phenotype, due mainly to reduced interveinal mesophyll cell (M cell) number, length, bulliform cell size and thus interveinal distance. Our studies demonstrate that the trait of high VD in rice can be achieved by elevated expression of NB-LRR proteins limited to no yield penalty.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yin Xiong ◽  
Chaopu Zhang ◽  
Hongju Zhou ◽  
Wenqiang Sun ◽  
Peng Wang ◽  
...  

AbstractHeterosis denotes the superiority of a hybrid plant over its parents. The use of heterosis has contributed significantly to yield improvement in crops. However, the genetic and molecular bases on heterosis are not fully understood. A large number of heterotic loci were identified for 12 yield-related traits in one parental population of chromosome segment substitution lines (CSSLs) and two test populations, which were interconnected by CSSLs derived from two rice genome-sequenced cultivars, Nipponbare and Zhenshan 97. Seventy-five heterotic loci were identified in both homozygous background of Zhenshan 97 and heterogeneous background of an elite hybrid cultivar Shanyou 63. Among the detected loci, at least 11 were colocalized in the same regions encompassing previously reported heterosis-associated genes. Furthermore, a heterotic locus Ghd8NIP for yield advantage was verified using transgenic experiments. Various allelic interaction at Ghd8 exhibited different heterosis levels in hetero-allelic combinations of five near-isogenic lines that contain a particular allele. The significant overdominance effects from some hetero-allelic combinations were found to improve yield heterosis in hybrid cultivars. Our findings support the role of allelic interaction at heterotic loci in the improvement of yield potential, which will be helpful for dissecting the genetic basis of heterosis and provide an optional strategy for the allele replacement in molecular breeding programs in hybrid rice.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260133
Author(s):  
Junxiao Chen ◽  
Kai Liu ◽  
Wenjun Zha ◽  
Lei Zhou ◽  
Ming Li ◽  
...  

Grain shape strongly influences the economic value and grain yield of rice. Thus, identifying quantitative trait loci (QTLs) for grain shape has been a longstanding goal in rice genetic research and breeding programs. Single nucleotide polymorphism (SNP) markers are ubiquitous in the rice genome and are more abundant and evenly distributed on the 12 rice chromosomes than traditional markers. An F2 population was genotyped using the RICE6K SNP array to elucidate the mechanisms governing grain shape. Thirty-five QTLs for grain shape were detected on 11 of 12 chromosomes over 2 years. The major QTL cluster qGS7 was detected in both years and displayed strong genetic effects on grain length and width, showing consistency with GL7/GW7. Some minor QTLs were also detected, and the effects of four QTLs on seed size were then validated using BC1F6 populations with residual heterozygous lines in each QTL region. Our findings provide insights into the molecular basis of grain shape as well as additional resources and approaches for producing hybrid high-yield rice varieties.


2021 ◽  
Author(s):  
Shaofang Li ◽  
Lang Liu ◽  
Wenxian Sun ◽  
Xueping Zhou ◽  
Huanbin Zhou

The high-activity adenine base editors (ABEs), engineered with the recently-developed tRNA adenosine deaminases (TadA8e and TadA9), show robust base editing activity but raise concerns about off-target effects. In this study, we performed a comprehensive evaluation of ABE8e- and ABE9-induced DNA and RNA mutations in Oryza sativa. Whole-genome sequencing analysis of plants transformed with four ABEs, including SpCas9n-TadA8e, SpCas9n-TadA9, SpCas9n-NG-TadA8e, and SpCas9n-NG-TadA9, revealed that ABEs harboring TadA9 lead to a higher number of off-target A-to-G (A>G) single-nucleotide variants (SNVs), and that those harboring the CRISPR/SpCas9n-NG lead to a higher total number of off-target SNVs in the rice genome. An analysis of the T-DNAs carrying the ABEs indicated that the on-target mutations could be introduced before and/or after T-DNA integration into plant genomes, with more off-target A>G SNVs forming after the ABEs had integrated into the plant genome. Furthermore, we detected off-target A>G RNA mutations in plants with high expression of ABEs but not in plants with low expression of ABEs. The off-target A>G RNA mutations tended to cluster, while off-target A>G DNA mutations rarely clustered.Our findings that Cas proteins, TadA variants, temporal expression of ABEs, and expression levels of ABEs contribute to ABE specificity in rice provide insight into the specificity of ABEs and suggest alternative ways to increase ABE specificity besides engineering TadA variants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chao Ouyang ◽  
Wei Liu ◽  
Silan Chen ◽  
Huimin Zhao ◽  
Xinyan Chen ◽  
...  

Glyphosate-resistant crops developed by the CP4-EPSPS gene from Agrobacterium have been planted on a massive scale globally, which benefits from the high efficiency and broad spectrum of glyphosate in weed control. Some glyphosate-resistant (GR) genes from microbes have been reported, which might raise biosafety concerns. Most of them were obtained through a hygromycin-HPT transformation system. Here we reported the plant source with 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from goosegrass endowed rice with high resistance to glyphosate. The integrations and inheritability of the transgenes in the rice genome were investigated within two generations. The EiEPSPS transgenic plants displayed similar growth and development to wild type under no glyphosate selection pressure but better reproductive performance under lower glyphosate selection pressure. Furthermore, we reconstructed a binary vector pCEiEPSPS and established the whole stage glyphosate selection using the vector. The Glyphosate-pCEiEPSPS selection system showed a significantly higher transformation efficiency compared with the hygromycin-HPT transformation system. Our results provided a promising alternative gene resource to the development of GR plants and also extended the plant transformation toolbox.


Export Citation Format

Share Document