Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

composite layer
Recently Published Documents


TOTAL DOCUMENTS

692
(FIVE YEARS 181)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 429 ◽  
pp. 132411
Author(s):  
Bing Zhao ◽  
Yaru Shi ◽  
Juan Wu ◽  
Cong Xing ◽  
Yiqian Liu ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 628
Author(s):  
Yinlong Zhu ◽  
Xin Chen ◽  
Kaimei Chu ◽  
Xu Wang ◽  
Zhiqiang Hu ◽  
...  

Flexible sensing tends to be widely exploited in the process of human–computer interactions of intelligent robots for its contact compliance and environmental adaptability. A novel flexible capacitive tactile sensor was proposed for multi-directional force sensing, which is based on carbon black/polydimethylsiloxane (PDMS) composite dielectric layer and upper and lower electrodes of carbon nanotubes/polydimethylsiloxane (CNTs/PDMS) composite layer. By changing the ratio of carbon black, the dielectric constant of carbon black/PDMS composite layer increases at 4 wt%, and then decreases, which was explained according to the percolation theory of the conductive particles in the polymer matrix. Mathematical model of force and capacitance variance was established, which can be used to predict the value of the applied force. Then, the prototype with carbon black/PDMS composite dielectric layer was fabricated and characterized. SEM observation was conducted and a ratio was introduced in the composites material design. It was concluded that the dielectric constant of carbon sensor can reach 0.1 N within 50 N in normal direction and 0.2 N in 0–10 N in tangential direction with good stability. Finally, the multi-directional force results were obtained. Compared with the individual directional force results, the output capacitance value of multi-directional force was lower, which indicated the amplitude decrease in capacity change in the normal and tangential direction. This might be caused by the deformation distribution in the normal and tangential direction under multi-directional force.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 439
Author(s):  
Mingshi Wang ◽  
Jianxun Zhang ◽  
Hui Yuan ◽  
Haoyuan Guo ◽  
Wenbo Zhuang

The plastic behavior in the large deflection response of slender sandwich beams with fiber metal laminate (FML) face sheets and a metal foam core under transverse loading is studied. According to a modified rigid–perfectly plastic material approximation, an analytical model is developed, and simple formulae are obtained for the large deflection response of fully clamped FML sandwich beams, considering the interaction of bending and stretching. Finite element (FE) calculations are conducted, and analytical predictions capture numerical results reasonably in the plastic stage of large deflection. The influences of metal volume fraction, strength ratio of metal to composite layer, core strength, and punch size on the plastic behavior in the large deflection response of FML sandwich beams are discussed. It is suggested that, if the structural behavior of fiber-metal laminate sandwich beams is plasticity dominated, it is similar to that of metal sandwich beams. Moreover, both metal volume fraction and the strength ratio of metal to composite layer are found to be important for the plastic behavior in the large deflection response of fiber metal laminate sandwich beams, while core strength and punch size might have little influence on it.


2022 ◽  
Author(s):  
D.V. Mashtalyar

Abstract. In this work the formation of protective coatings on VT1-0 commercially pure titanium by plasma electrolytic oxidation (PEO) and subsequent fluoropolymer treatment is presented. The structure, morphology, corrosion, and mechanical properties of the formed composite coatings were studied. It was established that PEO coatings are an excellent basis for the formation of a solid composite layer with high adhesion to its surface. The presence of polytetrafluoroethylene in the composition of the coating reduces the corrosion current density by 4 orders of magnitude and increases the wear resistance by 2 orders of magnitude in comparison with the base PEO coating.


2022 ◽  
pp. 107754632110564
Author(s):  
Nuruzzama M Khan ◽  
R Suresh Kumar

This study is aimed at incorporating the zig-zag effect by Murakami zig-zag function in the development of a finite element model for active constraining layer damping treatment of functionally graded sandwich plates. The present sandwich construction consists of functionally graded facings distanced by a ceramic core. The substrate functionally graded plate is subjected to active constraining layer damping treatment, which in itself is a two-layered material system comprised of a viscoelastic layer and a 1–3 piezoelectric composite layer. The deformation kinematics of the functionally graded sandwich plate active constraining layer damping system is shaped using Murakami zig-zag function , and the finite element model is obtained by the virtual work principle. A standard feedback control system has been implemented, and a MATLAB subroutine has been developed to present the open- and closed-loop responses. Substrate plates with functionally graded configurations 1-1-1, 1-2-1, and 2-1-2 are considered to evaluate the effect of active constraining layer damping on damping the frequency responses of these plates. Investigation on damping performance has been carried out, bearing in mind the change in power-law index with top and bottom ceramic-/metal-rich surfaces. Also, the effect of variation in fiber orientation angle (obliquely reinforced) of the piezoelectric composite material on the active constraining layer damping performance has been examined thoroughly.


2022 ◽  
pp. 115201
Author(s):  
M.P. Arunkumar ◽  
Vinod Bhagat ◽  
Qian Geng ◽  
Yueming Li ◽  
Jeyaraj Pitchaimani

2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Mehran Jaberi Zamharir ◽  
Mohammad Zakeri ◽  
Mansour Razavi

In this study, the UHTC-based composite layers where applied on the graphite substrates using SPS method to protect them against ablation. The protective layers had some defects and problems such as crack, fracture, separation, melting, and weak adhesion to the substrate. Several factors such as the thickness of composite layer, the number of protective layers, the SPS conditions (temperature, applied pressure, soaking time and mold), the chemical composition of the layers, the type of the substrate and the mismatch between the thermal expansion coefficients of the substrate and the applied layer(s) affected the quality and connection of the protective layer to the graphite substrate. The amount of additive materials influenced the melting phenomenon in the composite layer; for example, further MoSi2 in the layer led to more melting. The mismatch between the thermal expansion coefficients of the graphite substrate and the composite layer caused stresses during the cooling step, which resulted in cracks in the applied layer. Hence, proximity in the thermal expansion coefficients seems to be necessary for the formation of an acceptable adhesion between the layer and the substrate.


Export Citation Format

Share Document