Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

mapk pathway
Recently Published Documents


TOTAL DOCUMENTS

3832
(FIVE YEARS 1415)

H-INDEX

116
(FIVE YEARS 16)

Life Sciences ◽  
2022 ◽  
Vol 291 ◽  
pp. 120307
Author(s):  
Phung Nguyen ◽  
Phuong Doan ◽  
Akshaya Murugesan ◽  
Thiyagarajan Ramesh ◽  
Tatu Rimpilainen ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Romain Dalla-Torre ◽  
Vincent Crenn ◽  
Pierre Menu ◽  
Bertrand Isidor ◽  
Pascale Guillot ◽  
...  

Noonan syndrome (NS) is an autosomal dominant multisystem disorder caused by the dysregulation of the Rat Sarcoma/Mitogen-activated protein kinase (RAS/MAPK) pathway and characterized by short stature, heart defects, pectus excavatum, webbed neck, learning disabilities, cryptorchidism, and facial dysmorphia. Villonodular synovitis is a joint disorder most common in young adults characterized by an abnormal proliferation of the synovial membrane. Multifocal Villonodular synovitis is a rare disease whose recurrent nature can make its management particularly difficult. Currently, there is no systemic therapy recommended in diffuse and recurrent forms, especially because of the fear of long-term side effects in patients, who are usually young. Yet, tyrosine kinase inhibitors seem promising to reduce the effects of an aberrant colony stimulating factor-1 (CSF-1) production at the origin of the synovial nodule proliferation. We present here the case of a 21-year-old woman with NS associated to diffuse multifocal villonodular synovitis (DMVS). Our clinical case provides therapeutic experience in this very rare association. Indeed, in association with surgery, the patient improved considerably: she had complete daily life autonomy, knee joint amplitudes of 100° in flexion and 0° in extension and was able to walk for 10 min without any technical assistance. To our knowledge, this is the first case of a patient suffering from DMVS associated with a Noonan syndrome treated with Glivec® (oral administration at a dosage of 340 mg/m2 in children, until disease regression) on a long-term basis.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhenqing Wang ◽  
Yun Xie ◽  
Haicheng Chen ◽  
Jiahui Yao ◽  
Linyan Lv ◽  
...  

Male infertility is a major health issue with an estimated prevalence of 4.2% of male infertility worldwide. Oxidative stress (OS) is one of the main causes of male infertility, which is characterized by excessive reactive oxygen species (ROS) or lack of antioxidants. Meanwhile, it is reported that oxidative stress plays an important role in the spermatogenic impairment in Inner mitochondrial membrane peptidase 2-like (Immp2l) mutant mice. In this study, we focused on the potential mechanism of Guilingji in protecting the spermatogenic functions in Immp2l mutant mice. The results revealed that Immp2l mutant mice exhibit impaired spermatogenesis and histology shows seminiferous tubules with reduced spermatogenic cells. After administration of Guilingji [150 mg/kg per day intragastric gavage], however, alleviated spermatogenesis impairment and reversed testis histopathological damage and reduced apoptosis. What’s more, western blotting and the levels of redox classic markers revealed that Guilingji can markedly reduce reactive oxygen species. Moreover, Guilingji treatment led to inhibition of the phosphorylation of mitogen-activated protein kinase (MAPK), regulated apoptosis in the cells. In summary, Guilingji can improve spermatogenesis in Immp2l mutant mice by regulating oxidation-antioxidant balance and MAPK pathway. Our data suggests that Guilingji may be a promising and effective antioxidant candidate for the treatment of male infertility.


2022 ◽  
Author(s):  
anyu Xu ◽  
jingchun Pei ◽  
Yunhong Yang ◽  
Baotong Hua ◽  
Jing Wang

Abstract Background: The migration, proliferation, and inflammatory factor secretion of vascular smooth muscle cells (VSMCs) are involved in the important pathological processes of several vascular occlusive diseases, including coronary atherosclerosis (CAS). IL-1β, as a bioactive mediator of VSMC synthesis and secretion, can promote the pathological progress of CAS. In this study, we further explored the underlying molecular mechanisms by which IL-1β regulates VSMC migration, invasion.Methods: We pretreated A7r5 and HASMC with IL-1β for 24 hours, and measured the expression of IL-1β, PCNA, cyclin D1, MMP2 and MMP9 in the cells by Western blotting. Cell migration and invasion ability were measured by Transwell and wound healing assays. Cell viability was measured by an MTT assay. Results: We found that IL-1β up-regulated the expression of proliferation-related proteins (PCNA and Cyclin D1) in A7r5 and HASMC, and induces the secretion of MMP2 and MMP9, promotes cell invasion and migration. In addition, in A7r5 and HASMCs treated with IL-1β, the expression of Ang2 increased in a time-dependent manner, transfection with si-Ang2 suppressed cell migration and invasion, with down-regulated MMP2 and MMP9 expression. In parallely, we further found that the p38-MAPK pathway is activated in cells induced by IL-1β, p38-MAPK inhibitors can down-regulate the expression of Ang2. Conclusions: These data demonstrated that IL-1β promotes A7r5 and HASMC migration and invasion via the p38-MAPK/Ang2 pathway.


Author(s):  
Sophie Engelhardt ◽  
Felix Behling ◽  
Rudi Beschorner ◽  
Franziska Eckert ◽  
Patricia Kohlhof ◽  
...  

Abstract Purpose Low-grade gliomas (LGG) and mixed neuronal-glial tumors (MNGT) show frequent MAPK pathway alterations. Oncogenic fibroblast growth factor receptor 1 (FGFR1) tyrosinase kinase domain has been reported in brain tumors of various histologies. We sought to determine the frequency of FGFR1 hotspot mutations N546 and K656 in driver-unknown LGG/MNGT and examined FGFR1 immunohistochemistry as a potential tool to detect those alterations. Methods We analyzed 476 LGG/MNGT tumors for KIAA-1549-BRAF fusion, IDH1/2, TERT promotor, NF1, H3F3A and the remaining cases for FGFR1 mutation frequency and correlated FGFR1 immunohistochemistry in 106 cases. Results 368 of 476 LGG/MNGT tumors contained non-FGFR1 alterations. We identified 9 FGFR1 p.N546K and 4 FGFR1 p.K656E mutations among the 108 remaining driver-unknown samples. Five tumors were classified as dysembryoplastic neuroepithelial tumor (DNT), 4 as pilocytic astrocytoma (PA) and 3 as rosette-forming glioneuronal tumor (RGNT). FGFR1 mutations were associated with oligodendroglia-like cells, but not with age or tumor location. FGFR1 immunohistochemical expression was observed in 92 cases. FGFR1 immunoreactivity score was higher in PA and DNT compared to diffuse astrocytoma, but no correlation between FGFR1 mutation in tumors and FGFR1 expression level was observed. Conclusion FGFR1 hotspot mutations are the fifth most prevailing alteration in LGG/MNGT. Performing FGFR1 sequencing analysis in driver-unknown low-grade brain tumors could yield up to 12% FGFR1 N546/K656 mutant cases.


2022 ◽  
Vol 12 ◽  
Author(s):  
Aneta Aleksova ◽  
Milijana Janjusevic ◽  
Giulia Gagno ◽  
Alessandro Pierri ◽  
Laura Padoan ◽  
...  

Heart failure (HF) still affects millions of people worldwide despite great advances in therapeutic approaches in the cardiovascular field. Remarkably, unlike pathological hypertrophy, exercise leads to beneficial cardiac hypertrophy characterized by normal or enhanced contractile function. Exercise-based cardiac rehabilitation improves cardiorespiratory fitness and, as a consequence, ameliorates the quality of life of patients with HF. Particularly, multiple studies demonstrated the improvement in left ventricular ejection fraction (LVEF) among patients with HF due to the various processes in the myocardium triggered by exercise. Exercise stimulates IGF-1/PI3K/Akt pathway activation involved in muscle growth in both the myocardium and skeletal muscle by regulating protein synthesis and catabolism. Also, physical activity stimulates the activation of the mitogen-activated protein kinase (MAPK) pathway which regulates cellular proliferation, differentiation and apoptosis. In addition, emerging data pointed out the anti-inflammatory effects of exercises as well. Therefore, it is of utmost importance for clinicians to accurately evaluate the patient’s condition by performing a cardiopulmonary exercise test and/or a 6-min walking test. Portable devices with the possibility to measure exercise capacity proved to be very useful in this setting as well. The aim of this review is to gather together the molecular processes triggered by the exercise and available therapies in HF settings that could ameliorate heart performance, with a special focus on strategies such as exercise-based cardiac rehabilitation.


BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Fenghai Ren ◽  
Baojun Li ◽  
Chao Wang ◽  
Yanbo Wang ◽  
Binbin Cui

Abstract Background Colorectal cancer (CRC) represents a common malignancy in gastrointestinal tract. Iodine-125 (125I) seed implantation is an emerging treatment technology for unresectable tumors. This study investigated the mechanism of 125I seed in the function of CRC cells. Methods The CRC cells were irradiated with different doses of 125I seed (0.4, 0.6 and 0.8 mCi). miR-615 expression in CRC tissues and adjacent tissues was detected by RT-qPCR. miR-615 expression was intervened with miR-615 mimic or miR-615 inhibitor, and then the CRC cells were treated with 5-AZA (methylation inhibitor). The CRC cell growth, invasion and apoptosis were measured. The methylation level of miR-615 promoter region was detected. The xenograft tumor model irradiated by 125I seed was established in nude mice. The methylation of miR-615, Ki67 expression and CRC cell apoptosis were detected. Results 125I seed irradiation repressed the growth and facilitated apoptosis of CRC cells in a dose-dependent manner. Compared with adjacent tissues, miR-615 expression in CRC tissues was downregulated and miR-615 was poorly expressed in CRC cells. Overexpression of miR-615 suppressed the growth of CRC cells. 125I seed-irradiated CRC cells showed increased miR-615 expression, reduced growth rate and enhanced apoptosis. The methylation level of miR-615 promoter region in CRC cells was decreased after 125I seed treatment. In vivo experiments confirmed that 125I seed-irradiated xenograft tumors showed reduced methylation of the miR-615 promoter and increased miR-615 expression, as well as decreased Ki67 expression and enhanced apoptosis. The target genes of miR-615 and its regulatory downstream pathway were further predicted by bioinformatics analysis. Conclusions 125I seed repressed the growth and facilitated the apoptosis of CRC cells by suppressing the methylation of the miR-615 promoter and thus activating miR-615 expression. The possible mechanism was that miR-615-5p targeted MAPK13, thus affecting the MAPK pathway and the progression of CRC.


2022 ◽  
pp. 1-11
Author(s):  
Selma Demir ◽  
Hümeyra Yaşar Köstek ◽  
Aslıhan Sanrı ◽  
Ruken Yıldırım ◽  
Fatma Özgüç Çömlek ◽  
...  

<b><i>Introduction:</i></b> Germline pathogenic variations of the genes encoding the components of the Ras-MAPK pathway are found to be responsible for RASopathies, a clinically and genetically heterogeneous group of diseases. In this study, we aimed to present the results of patients genetically investigated for RASopathy-related mutations in our Genetic Diagnosis Center. <b><i>Methods:</i></b> The results of 51 unrelated probands with RASopathy and 4 affected relatives (31 male, 24 female; mean age: 9.327 ± 8.214) were included in this study. Mutation screening was performed on DNA samples from peripheral blood of the patients either by Sanger sequencing of <i>PTPN11</i> hotspot regions (10/51 probands), or by a targeted amplicon next-generation sequencing panel (41/51 probands) covering the exonic regions of <i>BRAF</i>, <i>CBL</i>, <i>HRAS</i>, <i>KRAS</i>, <i>LZTR1</i>, <i>MAP2K1</i>, <i>MAP2K2</i>, <i>NF1</i>, <i>NRAS</i>, <i>PTPN11</i>, <i>RAF1</i>, <i>RASA2</i>, <i>RIT1</i>, <i>SHOC2</i>, <i>SOS1</i>, <i>SOS2</i>, <i>SPRED1</i>, and <i>KAT6B</i> genes. <b><i>Results:</i></b> Pathogenic/likely pathogenic variations found in 22 out of 51 probands (43.13%) and their 4 affected family members were located in <i>PTPN11</i>, <i>BRAF</i>, <i>KRAS</i>, <i>NF1</i>, <i>RAF1</i>, <i>SOS1</i>, and <i>SHOC2</i> genes. The c.148A&#x3e;C (p.Thr50Pro) variation in the <i>KRAS</i> gene was a novel variant detected in a sibling in our patient cohort. We found supportive evidence for the pathogenicity of the <i>NF1</i> gene c.5606G&#x3e;T (p.Gly1869Val) variation which we defined in an affected boy who inherited the mutation from his affected father. <b><i>Conclusion:</i></b> Although <i>PTPN11</i> is the most frequently mutated gene in our patient cohort, as in most previous reports, different mutation distribution among the other genes studied motivates the use of a next-generation sequencing gene panel including the possible responsible genes.


Export Citation Format

Share Document