Abstract
Background
Ageing influences the metabolic flexibility, albeit the physical status could determine this relationship. This cross-sectional study aims to describe and analyse the metabolic flexibility/inflexibility in a group of active older women, together with the impact of ageing and physical status on their oxidation rates and maximal fat oxidation (MFO).
Methods
Fifteen volunteers (69.00±6.97 years) from 24 women, completed an incremental cycling test until the second ventilatory threshold. Intensity increased 10W each 3min–15sec, starting at 30W. Gas exchange, heart rate, rate of perceived effort, pain scale and muscle power were registered, together with lactate. VO2 and VCO2 were considered for Fat and CHO oxidation (FATox & CHOox; Frayn’s equation) at the intensities 60%, 80% and 100% from the peak of power in the test (P100). Psychophysiological parameters were compared at MFO/FATmax and P100, together with the main correlation analyses, with and without P100 and VO2 as covariates.
Results
FATox was low at MFO (0.13; 95%CI [0.09-0.17] g·min−1·kg; 5.61 [3.59-7.63] g·min−1·kg FFM), with a shifting down and leftward of a short oxidation-rate curves. CHOox and FATox were both low for a reduced power with age (77.14±18.58 W & 39.29±9.17 W at P100 and MFO respectively), pointing to metabolic inflexibility in older women despite being active. Notwithstanding, the negative correlation between age and MFO (r=-0.54, p=0.04; R2=0.29) disappeared when normalized with P100 (r=-0.17, p=0.53), which was in turn strongly and negatively associated to age (r=-0.85, p<0.005; R2=0.72). P100 was also positive and moderately associated to MFO (r=0.71, p=0.01; R2=0.50).
Conclusions
Despite the inflexibility with age, physical status (i.e., larger muscular power) suggest a key role in the preservation of the metabolic health with aging in active women.