Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

renewable chemicals
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 49)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 806 ◽  
pp. 150312
Author(s):  
A. Naresh Kumar ◽  
Omprakash Sarkar ◽  
K. Chandrasekhar ◽  
Tirath Raj ◽  
Vivek Narisetty ◽  
...  

2021 ◽  
Vol 152 ◽  
pp. 111674
Author(s):  
Timothy D.H. Bugg ◽  
James J. Williamson ◽  
Fabrizio Alberti

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7203
Author(s):  
Margarida M. Antunes ◽  
Andreia F. Silva ◽  
Carolina D. Bernardino ◽  
Auguste Fernandes ◽  
Filipa Ribeiro ◽  
...  

Heterogeneous catalysis, which has served well the petrochemical industry, may valuably contribute towards a bio-based economy by sustainably enabling selective reactions to renewable chemicals. Carbohydrate-containing matter may be obtained from various widespread sources and selectively converted to furanic platform chemicals: furfural (Fur) and 5-(hydroxymethyl)furfural (Hmf). Valuable bioproducts may be obtained from these aldehydes via catalytic transfer hydrogenation (CTH) using alcohols as H-donors under relatively moderate reaction conditions. Hafnium-containing TUD-1 type catalysts were the first of ordered mesoporous silicates explored for the conversion of Fur and Hmf via CTH/alcohol strategies. The materials promoted CTH and acid reactions leading to the furanic ethers. The bioproducts spectrum was broader for the reaction of Fur than of Hmf. A Fur reaction mechanism based on literature data was discussed and supported by kinetic modelling. The influence of the Hf loading and reaction conditions (catalyst load, type of alcohol H-donor, temperature, initial substrate concentration) on the reaction kinetics was studied. The reaction conditions were optimized to maximize the yields of 2-(alkoxymethyl)furan ethers formed from Fur; up to 63% yield was reached at 88% Fur conversion, 4 h/150 °C, using Hf-TUD-1(75), which was a stable catalyst. The Hf-TUD-1(x) catalysts promoted the selective conversion of Hmf to bis(2-alkoxymethyl)furan; e.g., 96% selectivity at 98% Hmf conversion, 3 h/170 °C for Hf-TUD-1(50).


2021 ◽  
Author(s):  
Kurra Mohan ◽  
Bollikolla Hari Babu ◽  
Khandapu Bala Murali Krishna ◽  
Kotra Vijay ◽  
Varala Ravi

This title of the book chapter deals with the late transition metal-NHC (N-heterocyclic carbene) catalyzed transformations of renewable chemicals, i.e., bio-mass resources (carbohydrates/vegetable oils/natural products) into useful chemicals via oxidation, hydrogenation, dehydration, polymerization, hydrolysis, etc. along with brief introductory notes on late transition metals, carbenes, and renewable chemicals for better understanding to the reader.


Author(s):  
Heeyoung Choi ◽  
Jeehoon Han ◽  
Jechan Lee

Fluctuating crude oil price and global environmental problems such as global warming and climate change lead to growing demand for the production of renewable chemicals as petrochemical substitutes. Butanol is a nonpolar alcohol that is used in a large variety of consumer products and as an important industrial intermediate. Thus, the production of butanol from renewable resources (e.g., biomass and organic waste) has gained a great deal of attention from researchers. Although typical renewable butanol is produced via a fermentative route (i.e., acetone-butanol-ethanol (ABE) fermentation of biomass-derived sugars), the fermentative butanol production has disadvantages such as a low yield of butanol and the formation of byproducts, such as acetone and ethanol. To avoid the drawbacks, the production of renewable butanol via non-fermentative catalytic routes has been recently proposed. This review is aimed at providing an overview on three different emerging and promising catalytic routes from biomass/organic waste-derived chemicals to butanol. The first route involves the conversion of ethanol into butanol over metal and oxide catalysts. Volatile fatty acid can be a raw chemical for the production of butanol using porous materials and metal catalysts. In addition, biomass-derived syngas can be transformed to butanol on non-noble metal catalysts promoted by alkali metals. The prospect of catalytic renewable butanol production is also discussed.


2021 ◽  
Author(s):  
Karla Banjac ◽  
Thanh Hai Phan ◽  
Fernando P. Cometto ◽  
Patrick Alexa ◽  
Yunchang Liang ◽  
...  

The electrochemical reduction of CO2 (CO2RR) into multicarbon compounds is a promising pathway towards renewable chemicals. Structure-product selectivity studies highlight that copper (100) facets favour C2+ product formation. However, the atomic processes leading to the formation of (100)-rich Cu cubes remains elusive. Herein, we use Cu and graphene-protected Cu surfaces to reveal the differences in structure and composition of common Cu-based electrocatalysts, from nano to micrometer scales. We show that stripping/electrodeposition cycles lead to thermodynamically controlled growth of Cu2O micro/nanocubes, while multi-layered Cu nanocuboids form universally during CO2RR upon polarization-driven re-organization of Cu0 atoms. A synergy of electrochemical characterization by scanning tunnelling microscopy (EC-STM), operando EC-Raman and quasi-operando X-Ray Photoemission spectroscopy (XPS) allows us to shed light on the role of oxygen on the dynamic interfacial processes of Cu, and to demonstrate that chloride is not needed for the stabilization of cubic Cu nanostructures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun Feng ◽  
Jie Zhang ◽  
Yuechao Ma ◽  
Yiming Feng ◽  
Shangjun Wang ◽  
...  

AbstractBioproduction of renewable chemicals is considered as an urgent solution for fossil energy crisis. However, despite tremendous efforts, it is still challenging to generate microbial strains that can produce target biochemical to high levels. Here, we report an example of biosynthesis of high-value and easy-recoverable derivatives built upon natural microbial pathways, leading to improvement in bioproduction efficiency. By leveraging pathways in solventogenic clostridia for co-producing acyl-CoAs, acids and alcohols as precursors, through rational screening for host strains and enzymes, systematic metabolic engineering-including elimination of putative prophages, we develop strains that can produce 20.3 g/L butyl acetate and 1.6 g/L butyl butyrate. Techno-economic analysis results suggest the economic competitiveness of our developed bioprocess. Our principles of selecting the most appropriate host for specific bioproduction and engineering microbial chassis to produce high-value and easy-separable end products may be applicable to other bioprocesses.


Author(s):  
Yanyan Wang ◽  
Linxia Liu ◽  
Zhaoxia Jin ◽  
Dawei Zhang

Vitamins are a group of essential nutrients that are necessary to maintain normal metabolic activities and optimal health. There are wide applications of different vitamins in food, cosmetics, feed, medicine, and other areas. The increase in the global demand for vitamins has inspired great interest in novel production strategies. Chemical synthesis methods often require high temperatures or pressurized reactors and use non-renewable chemicals or toxic solvents that cause product safety concerns, pollution, and hazardous waste. Microbial cell factories for the production of vitamins are green and sustainable from both environmental and economic standpoints. In this review, we summarized the vitamins which can potentially be produced using microbial cell factories or are already being produced in commercial fermentation processes. They include water-soluble vitamins (vitamin B complex and vitamin C) as well as fat-soluble vitamins (vitamin A/D/E and vitamin K). Furthermore, metabolic engineering is discussed to provide a reference for the construction of microbial cell factories. We also highlight the current state and problems encountered in the fermentative production of vitamins.


Author(s):  
Marc Scherer ◽  
Sarel J. Fleishman ◽  
Patrik R. Jones ◽  
Thomas Dandekar ◽  
Elena Bencurova

To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways.


Author(s):  
Wen-Jie Guo ◽  
Jia-Kun Xu ◽  
Jing-Jing Liu ◽  
Jia-Jia Lang ◽  
Shu-Qin Gao ◽  
...  

The conversion of Kraft lignin in plant biomass into renewable chemicals, aiming at harvesting aromatic compounds, is a challenge process in biorefinery. Comparing to the traditional chemical methods, enzymatic catalysis provides a gentle way for the degradation of lignin. Alternative to natural enzymes, artificial enzymes have been received much attention for potential applications. We herein achieved the biodegradation of Kraft lignin using an artificial peroxidase rationally designed in myoglobin (Mb), F43Y/T67R Mb, with a covalently linked heme cofactor. The artificial enzyme of F43Y/T67R Mb has improved catalytic efficiencies at mild acidic pH for phenolic and aromatic amine substrates, including Kraft lignin and the model lignin dimer guaiacylglycerol-β-guaiacyl ether (GGE). We proposed a possible catalytic mechanism for the biotransformation of lignin catalyzed by the enzyme, based on the results of kinetic UV-Vis studies and UPLC-ESI-MS analysis, as well as molecular modeling studies. With the advantages of F43Y/T67R Mb, such as the high-yield by overexpression in E. coli cells and the enhanced protein stability, this study suggests that the artificial enzyme has potential applications in the biodegradation of lignin to provide sustainable bioresource.


Export Citation Format

Share Document