Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

enhanced production
Recently Published Documents


TOTAL DOCUMENTS

2443
(FIVE YEARS 445)

H-INDEX

87
(FIVE YEARS 7)

2022 ◽  
Vol 8 ◽  
pp. 183-191
Author(s):  
Bogdan Ulejczyk ◽  
Łukasz Nogal ◽  
Michał Młotek ◽  
Krzysztof Krawczyk

2023 ◽  
Vol 83 ◽  
Author(s):  
B. Mazhar ◽  
N. Jahan ◽  
M. Chaudhry ◽  
I. Liaqat ◽  
M. Dar ◽  
...  

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiao Wang ◽  
Changxin Yu ◽  
Junyi Zhuang ◽  
Wenxin Qi ◽  
Jiawen Jiang ◽  
...  

AbstractThe negatively charged aminophospholipid, phosphatidylserine (PtdSer), is located in the inner leaflet of the plasma membrane in normal cells, and may be exposed to the outer leaflet under some immune and blood coagulation processes. Meanwhile, Ptdser exposed to apoptotic cells can be recognized and eliminated by various immune cells, whereas on the surface of activated platelets Ptdser interacts with coagulation factors prompting enhanced production of thrombin which significantly facilitates blood coagulation. In the case where PtdSer fails in exposure or mistakenly occurs, there are occurrences of certain immunological and haematological diseases, such as the Scott syndrome and Systemic lupus erythematosus. Besides, viruses (e.g., Human Immunodeficiency Virus (HIV), Ebola virus (EBOV)) can invade host cells through binding the exposed PtdSer. Most recently, the Corona Virus Disease 2019 (COVID-19) has been similarly linked to PtdSer or its receptors. Therefore, it is essential to comprehensively understand PtdSer and its functional characteristics. Therefore, this review summarizes Ptdser, its eversion mechanism; interaction mechanism, particularly with its immune receptors and coagulation factors; recognition sites; and its function in immune and blood processes. This review illustrates the potential aspects for the underlying pathogenic mechanism of PtdSer-related diseases, and the discovery of new therapeutic strategies as well.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hyo Bin Koo ◽  
Hwan-Su Hwang ◽  
Jung Yeon Han ◽  
Eun Ju Cheong ◽  
Yong-Soo Kwon ◽  
...  

AbstractPinosylvin stilbenes are phenolic compounds mainly occurring in the Pinaceae family. We previously reported that the accumulation of two pinosylvin stilbene compounds, dihydropinosylvin methyl ether (DPME) and pinosylvin monomethyl ether (PME), in Pinus strobus trees was highly enhanced by infection with pine wood nematodes (PWNs: Bursaphelenchus xylophilus), and these two compounds showed strong nematicidal activity against PWNs. In this work, we established a system of pinosylvin stilbene (DPME and PME) production via the in vitro culture of P. strobus calli, and we examined the nematicidal activity of callus extracts. Calli were induced from the culture of mature zygotic embryos of P. strobus. Optimized growth of calli was obtained in 1/2 Litvay medium with 1.0 mg/L 2,4-D and 0.5 mg/L BA. DPME and PME accumulation did not occur in nonaged (one-month-old) calli but increased greatly with prolonged callus culture. The concentrations of DPME and PME in three-month-old dark-brown calli were 6.4 mg/g DW and 0.28 mg/g DW, respectively. The effect of methyl jasmonate treatment on the accumulation of DPME and PME was evaluated in cell suspension culture of P. strobus. However, the treatment appeared to show slight increase of DPME accumulation compared to callus browning. A test solution prepared from crude ethanol extracts from aged calli (three months old) containing 120 µg/ml DPME and 5.16 µg/ml PME treated with PWNs resulted in 100% immobilization of the adult PWNs and 66.7% immobilization of the juvenile PWNs within 24 h. However, nonaged callus extracts did not show any nematicidal activity against juvenile PWNs and showed less than 20% nematicidal activity against adult PWNs. These results indicate that pinosylvin stilbenes can be effectively produced by prolonged culture of P. strobus calli, can be isolated using simple ethanolic extraction, and are applicable as beneficial eco-friendly compounds with nematicidal activity against PWNs.


2022 ◽  
Vol 10 (1) ◽  
pp. 163
Author(s):  
Laura Ellen Walls ◽  
José L. Martinez ◽  
Leonardo Rios-Solis

The recent technological advancements in synthetic biology have demonstrated the extensive potential socio-economic benefits at laboratory scale. However, translations of such technologies to industrial scale fermentations remains a major bottleneck. The existence and lack of understanding of the major discrepancies in cultivation conditions between scales often leads to the selection of suboptimal bioprocessing conditions, crippling industrial scale productivity. In this study, strategic design of experiments approaches were coupled with state-of-the-art bioreactor tools to characterize and overcome nutritional stress for the enhanced production of precursors to the blockbuster chemotherapy drug, Taxol, in S. cerevisiae cell factories. The batch-to-batch variation in yeast extract composition was found to trigger nutritional stress at a mini-bioreactor scale, resulting in profound changes in cellular morphology and the inhibition of taxane production. The cells shifted from the typical budding morphology into striking pseudohyphal cells. Doubling initial yeast extract and peptone concentrations (2×YP) delayed filamentous growth, and taxane accumulation improved to 108 mg/L. Through coupling a statistical definitive screening design approach with the state-of-the-art high-throughput micro-bioreactors, the total taxane titers were improved a further two-fold, compared to the 2×YP culture, to 229 mg/L. Filamentous growth was absent in nutrient-limited microscale cultures, underlining the complex and multifactorial nature of yeast stress responses. Validation of the optimal microscale conditions in 1L bioreactors successfully alleviated nutritional stress and improved the titers to 387 mg/L. Production of the key Taxol precursor, T5αAc, was improved two-fold to 22 mg/L compared to previous maxima. The present study highlights the importance of following an interdisciplinary approach combining synthetic biology and bioprocessing technologies for effective process optimization and scale-up.


Author(s):  
Jemin Son ◽  
Kang Hyun Lee ◽  
Taek Lee ◽  
Hyun Soo Kim ◽  
Weon Ho Shin ◽  
...  

Biorefineries are attracting attention as an alternative to the petroleum industry to reduce carbon emissions and achieve sustainable development. In particular, because forests play an important role in potentially reducing greenhouse gas emissions to net zero, alternatives to cellulose produced by plants are required. Bacterial cellulose (BC) can prevent deforestation and has a high potential for use as a biomaterial in various industries such as food, cosmetics, and pharmaceuticals. This study aimed to improve BC production from lignocellulose, a sustainable feedstock, and to optimize the culture conditions for Gluconacetobacter xylinus using Miscanthus hydrolysates as a medium. The productivity of BC was improved using statistical optimization of the major culture parameters which were as follows: temperature, 29 °C; initial pH, 5.1; and sodium alginate concentration, 0.09% (w/v). The predicted and actual values of BC production in the optimal conditions were 14.07 g/L and 14.88 g/L, respectively, confirming that our prediction model was statistically significant. Additionally, BC production using Miscanthus hydrolysates was 1.12-fold higher than in the control group (commercial glucose). Our result indicate that lignocellulose can be used in the BC production processes in the near future.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Sukhyeong Cho ◽  
Yun Seo Lee ◽  
Hanyu Chai ◽  
Sang Eun Lim ◽  
Jeong Geol Na ◽  
...  

Abstract Background Ectoine (1,3,4,5-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is an attractive compatible solute because of its wide industrial applications. Previous studies on the microbial production of ectoine have focused on sugar fermentation. Alternatively, methane can be used as an inexpensive and abundant resource for ectoine production by using the halophilic methanotroph, Methylomicrobium alcaliphilum 20Z. However, there are some limitations, including the low production of ectoine from methane and the limited tools for the genetic manipulation of methanotrophs to facilitate their use as industrial strains. Results We constructed M. alcaliphilum 20ZDP with a high conjugation efficiency and stability of the episomal plasmid by the removal of its native plasmid. To improve the ectoine production in M. alcaliphilum 20Z from methane, the ectD (encoding ectoine hydroxylase) and ectR (transcription repressor of the ectABC-ask operon) were deleted to reduce the formation of by-products (such as hydroxyectoine) and induce ectoine production. When the double mutant was batch cultured with methane, ectoine production was enhanced 1.6-fold compared to that obtained with M. alcaliphilum 20ZDP (45.58 mg/L vs. 27.26 mg/L) without growth inhibition. Notably, a maximum titer of 142.32 mg/L was reached by the use of an optimized medium for ectoine production containing 6% NaCl and 0.05 μM of tungsten without hydroxyectoine production. This result demonstrates the highest ectoine production from methane to date. Conclusions Ectoine production was significantly enhanced by the disruption of the ectD and ectR genes in M. alcaliphilum 20Z under optimized conditions favoring ectoine accumulation. We demonstrated effective genetic engineering in a methanotrophic bacterium, with enhanced production of ectoine from methane as the sole carbon source. This study suggests a potentially transformational path to commercial sugar-based ectoine production. Graphical Abstract


2022 ◽  
Author(s):  
Asif Hoq ◽  
Yann Caline ◽  
Erik Jakobsen ◽  
Neil Wood ◽  
Rob Stolpman ◽  
...  

Abstract The Valhall field, operated by AkerBP, has been a major hub in the North Sea, on stream for thirty-eight years and recently passed one billion barrels of oil produced. The field requires stimulation for economical production. Mechanically strong formations are acid stimulated, while weaker formations require large tip-screenout design proppant fractures. Fracture deployment methods on Valhall have remained relatively unchanged since the nineties and are currently referred to as "conventional". Those consist in a sequence of placing a proppant frac, cleaning out the well with coiled tubing, opening a sleeve or shooting perforations, then coil pulling out of hole pumping the proppant frac. For the past few years, AkerBP and their service partners have worked on qualifying an adapted version of the annular coiled tubing fracturing practice for the offshore infrastructure - a first for the industry, which has been a strategic priority for the operator as it significantly reduces execution time and accelerates production. As with all technology trials, the implementation of this practice on Valhall had to begin on a learning curve through various forms of challenges. Whilst investigating the cause and frequency of premature screenouts during the initial implementation of annular fracturing, the team decided to challenge the conventional standards for fluid testing and quality control. Carefully engineered adjustments were made with regards to high shear testing conditions, temperature modelling, and mixing sequences, these did not only identify the root cause for the unexpected screenouts, but also helped create the current blueprint for engineering a robust fluid. Since the deployment of the redefined recipe, adjusted testing procedures and changes made to the stimulation vessel, there have not been any cases of fluid induced screenouts during the executions. The fewer types of additives now required for the recipe have lowered the cost of treatments and the lower gel loading leads to reduced damage in the fractures, thereby contributing to enhanced production over the lifetime of the wells. This paper describes the investigation, findings and the resulting changes made to the fluid formulation and quality control procedures to accommodate for high shear and dynamic wellbore temperature conditions. It discusses the rationale behind the "reality" testing model and, proves that significant value is created from investing time in thoroughly understanding fluid behaviour in the lab, prior to pumping it on large-scale capital-intensive operations. The study demonstrated that there is always value in innovating or challenging pre-conceived practices, and the learnings from this investigation significantly improved the track record for annular fracturing on Valhall, redefined fluid engineering for the North Sea and will inform future annular fracturing deployments on other offshore assets around the world.


Export Citation Format

Share Document