Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

subterranean clover
Recently Published Documents


TOTAL DOCUMENTS

1463
(FIVE YEARS 26)

H-INDEX

50
(FIVE YEARS 2)

2022 ◽  
Vol 134 ◽  
pp. 126451
Author(s):  
Jing Guo ◽  
Carmen. S.P. Teixeira ◽  
James Barringer ◽  
John G. Hampton ◽  
Derrick J. Moot

2021 ◽  
Author(s):  
Mahsa Mansourpour ◽  
Romain Gallet ◽  
Alireza Abbasi ◽  
Stephane Blanc ◽  
Akbar Dizadji ◽  
...  

Nanoviruses are plant viruses with a multipartite single-stranded DNA (ssDNA) genome. Alphasatellites are commonly associated with nanovirus infections, but their putative impact on their helper viruses is unknown. In this study, we investigated the role of subterranean clover stunt alphasatellite 1 (hereafter named SCSA 1) on various important traits of faba bean necrotic yellows virus (FBNYV) in its host plant Vicia faba and aphid vector Acyrthosiphon pisum , including disease symptoms, viral accumulation and transmission. The results indicate that SCSA 1 does not affect the symptom severity nor the overall FBNYV accumulation in V. faba, but changes the relative amounts of its different genomic segments. Moreover, the association of SCSA 1 with FBNYV increases the rate of plant-to-plant transmission by a process seemingly unrelated to simple increase of the viral accumulation in the vector. These results represent the first study on the impact of an alphasatellite on the biology of its helper nanovirus. They suggest that SCSA 1 may benefit FBNYV, but the genericity of this conclusion is discussed and questioned. Importance Alphasatellites are circular single stranded DNA molecules frequently found in association with natural isolates of nanoviruses and some geminiviruse, the two ssDNA plant infecting virus families. While the implications of alphasatellite presence in geminivirus infections are relatively well documented, comparable studies on alphasatellites associated with nanoviruses are not available. Here we confirm that subterranean clover stunt alphasatellite 1 affects different traits of its helper nanovirus, faba bean necrotic yellows virus, both in the host plant and aphid vector. We show that the frequencies of the virus segments change in the presence of alphasatellite, in both plant and vector. We also confirm that while within-plant virus load and symptom are not affected by alphasatellite, the presence of alphasatellite decreases within-aphid virus load, but significantly increases virus transmission rate, so may confer a possible evolutionary advantage for the helper virus.


2021 ◽  
Vol 18 (184) ◽  
Author(s):  
W. M. Moss ◽  
P. G. H. Nichols ◽  
M. H. Ryan ◽  
K. J. Foster ◽  
A. L. Guzzomi

Seed retention has not been evaluated for subterranean clover ( Trifolium subterraneum L.), because its geocarpic seed-bearing burrs are currently harvested by suction systems. Development of improved harvest methods requires knowledge of subterranean clover seed retention characteristics and their changes with plant development. This study evaluates burr attachment and peduncle tensile strength during burr maturity until plant senescence across the three subspecies: subterraneum (cv. Dalkeith), yanninicum (cv. Monti) and brachycalycinum (cv. Mawson). Peduncle tensile strength was greater than burr-to-peduncle attachment strength for each subspecies, with peak mean peduncle strength 30–130% greater than peak mean burr-to-peduncle attachment strength. Both strength measurements decreased significantly (greater than 50% for each subspecies) as the plant senesced, which was associated with reductions in burr moisture content, and burr and peduncle diameters. Microscopy indicated a ductile to brittle transition as peduncles senesced, reducing energy absorption and increasing the likelihood of failure at defects. These results are important for the commercial production of subterranean clover seed and suggest it may be possible to harvest seed before plant senescence with dig-invert machinery, similar to that used for peanut harvesting. However, this approach would require harvesting prior to maximum seed development and the implications for seed viability and yield need to be further evaluated.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 782
Author(s):  
Stefania Fontanazza ◽  
Alessia Restuccia ◽  
Giovanni Mauromicale ◽  
Aurelio Scavo ◽  
Cristina Abbate

To reduce the plastic waste problem in agriculture, biodegradable plastic (BP) mulch films have become of key importance thanks to their biodegradability and beneficial effects on crops. However, at present, BPs cannot always replace conventional plastics, because biodegradation is governed by many biotic and abiotic factors under field conditions. This research aimed at isolating and identifying, from soil particles directly attached to the surface of BP samples, the microorganisms responsible of degradation through a combined approach based on biodegradation and molecular tests. For this purpose, a field trial within a Mediterranean apricot orchard was carried out to study the biodegradation of a commercial BP mulch with respect to a no-BP, a conventional apricot management, following the standard agricultural practices, and a subterranean clover cover cropping, either incorporating or leaving its dead mulches on the soil surface. After BP film appeared visibly degraded in field, we isolated from soil particles attached to the polymer surface, a mesophilic bacterium with certain degradative potential assessed by plate and liquid assays, identified by sequencing as Pseudomonas putida. Quantitative real time PCR analysis showed the P. putida was significantly more abundant in PB plots than the other plot treatments. These preliminary results are potentially applicable to accelerate the degradation of BP mulch films and decrease the plastic pollution in agriculture.


2021 ◽  
Vol 17 ◽  
Author(s):  
Robin Boom ◽  
Mike Dodd

A 4-year lime rate trial was established on a hill country sheep and cattle property near Te Akau to determine lime effects on pasture utilisation. Four rates of lime were applied (1.25 t/ha, 2.5 t/ha, 5 t/ha and 10 t/ha) to 2 m × 2 m plots, from which soil Al, Ca and pH, pasture grazing heights, dry matter production, pasture species composition, feed quality and brix levels were measured. Lime application reduced soil Al (14.6 to 1.1 mg/kg), and increased Ca and pH (5.0 to 6.2) over time in the highest application rate. Dry matter production responded to all rates of lime in each year, and by the fourth year it was 27% greater (1.25 t/ha treatment), 35% greater (2.5 t/ha treatment), 69% greater (5 t/ha treatment), and 97% greater (10 t/ha treatment) than in the un-limed plots. Ryegrass and subterranean clover content increased with lime rate, whereas chewings fescue and dicot weed content declined. There were no sustained differences in pasture grazing heights, feed quality or brix levels between the control and rates of lime. On this site, all rates of lime were economic to apply by truck or plane when the benefits were spread over 4 years, with the greatest cost-benefit from thelower rates of lime.


2021 ◽  
Vol 22 (8) ◽  
pp. 4181
Author(s):  
Fernando Perez Rojo ◽  
Sumedha Seth ◽  
William Erskine ◽  
Parwinder Kaur

Subterranean clover (Trifolium subterraneum) is the most widely grown annual pasture legume in southern Australia. With the advent of advanced sequencing and genome editing technologies, a simple and efficient gene transfer protocol mediated by Agrobacterium tumefaciens was developed to overcome the hurdle of genetic manipulation in subterranean clover. In vitro tissue culture and Agrobacterium transformation play a central role in testing the link between specific genes and agronomic traits. In this paper, we investigate a variety of factors affecting the transformation in subterranean clover to increase the transformation efficiency. In vitro culture was optimised by including cefotaxime during seed sterilisation and testing the best antibiotic concentration to select recombinant explants. The concentrations for the combination of antibiotics obtained were as follows: 40 mg L−1 hygromycin, 100 mg L−1 kanamycin and 200 mg L−1 cefotaxime. Additionally, 200 mg L−1 cefotaxime increased shoot regeneration by two-fold. Different plant hormone combinations were tested to analyse the best rooting media. Roots were obtained in a medium supplemented with 1.2 µM IAA. Plasmid pH35 containing a hygromycin-resistant gene and GUS gene was inoculated into the explants with Agrobacterium tumefaciens strain AGL0 for transformation. Overall, the transformation efficiency was improved from the 1% previously reported to 5.2%, tested at explant level with Cefotaxime showing a positive effect on shooting regeneration. Other variables in addition to antibiotic and hormone combinations such as bacterial OD, time of infection and incubation temperature may be further tested to enhance the transformation even more. This improved transformation study presents an opportunity to increase the feeding value, persistence, and nutritive value of the key Australian pasture.


2021 ◽  
Author(s):  
Carmen Teixeira ◽  
John Hampton ◽  
Derrick Moot
Keyword(s):  

2021 ◽  
Vol 11 ◽  
Author(s):  
Bede S. Mickan ◽  
Ahmed R. Alsharmani ◽  
Zakaria M. Solaiman ◽  
Matthias Leopold ◽  
Lynette K. Abbott

Biostimulants are gaining momentum as potential soil amendments to increase plant health and productivity. Plant growth responses to some biostimulants and poorly soluble fertilizers could increase soil microbial diversity and provide greater plant access to less soluble nutrients. We assessed an agricultural soil amended with a multispecies microbial biostimulant in comparison with two fertilizers that differed in elemental solubilities to identify effects on soil bacterial communities associated with two annual pasture species (subterranean clover and Wimmera ryegrass). The treatments applied were: a multispecies microbial biostimulant, a poorly soluble rock mineral fertilizer at a rate of 5.6 kg P ha–1, a chemical fertilizer at a rate of 5.6 kg P ha–1, and a negative control with no fertilizer or microbial biostimulant. The two annual pasture species were grown separately for 10 weeks in a glasshouse with soil maintained at 70% of field capacity. Soil bacteria were studied using 16S rRNA with 27F and 519R bacterial primers on the Mi-seq platform. The microbial biostimulant had no effect on growth of either of the pasture species. However, it did influence soil biodiversity in a way that was dependent on the plant species. While application of the fertilizers increased plant growth, they were both associated with the lowest diversity of the soil bacterial community based on Fisher and Inverse Simpson indices. Additionally, these responses were plant-dependent; soil bacterial richness was highly correlated with soil pH for subterranean clover but not for Wimmera ryegrass. Soil bacterial richness was lowest following application of each fertilizer when subterranean clover was grown. In contrast, for Wimmera ryegrass, soil bacterial richness was lowest for the control and rock mineral fertilizer. Beta diversity at the bacterial OTU level of resolution by permanova demonstrated a significant impact of soil amendments, plant species and an interaction between plant type and soil amendments. This experiment highlights the complexity of how soil amendments, including microbial biostimulants, may influence soil bacterial communities associated with different plant species, and shows that caution is required when linking soil biodiversity to plant growth. In this case, the microbial biostimulant influenced soil biodiversity without influencing plant growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sanjutha Shanmugam ◽  
Sasha N. Jenkins ◽  
Bede S. Mickan ◽  
Noraini Md Jaafar ◽  
Falko Mathes ◽  
...  

AbstractCo-application of biochar and biosolids to soil has potential to mitigate N leaching due to physical and chemical properties of biochar. Changes in N cycling pathways in soil induced by co-application of biological amendments could further mitigate N loss, but this is largely unexplored. The aim of this study was to determine whether co-application of a biochar and a modified biosolids product to three pasture soils differing in texture could alter the relative abundance of N cycling genes in soil sown with subterranean clover. The biosolids product contained lime and clay and increased subterranean clover shoot biomass in parallel with increases in soil pH and soil nitrate. Its co-application with biochar similarly increased plant growth and soil pH with a marked reduction in nitrate in two coarse textured soils but not in a clayey soil. While application of the biosolids product altered in silico predicted N cycling functional genes, there was no additional change when applied to soil in combination with biochar. This supports the conclusion that co-application of the biochar and biosolids product used here has potential to mitigate loss of N in coarse textured soils due to N adsoption by the biochar and independently of microbial N pathways.


Export Citation Format

Share Document