Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

ground vehicle
Recently Published Documents


TOTAL DOCUMENTS

1357
(FIVE YEARS 261)

H-INDEX

36
(FIVE YEARS 2)

2022 ◽  
Vol 164 ◽  
pp. 108263
Author(s):  
Yutian Zhang ◽  
Jun Ni ◽  
Hanqing Tian ◽  
Wei Wu ◽  
Jibin Hu

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 601
Author(s):  
Przemyslaw Dabek ◽  
Jaroslaw Szrek ◽  
Radoslaw Zimroz ◽  
Jacek Wodecki

Complex mechanical systems used in the mining industry for efficient raw materials extraction require proper maintenance. Especially in a deep underground mine, the regular inspection of machines operating in extremely harsh conditions is challenging, thus, monitoring systems and autonomous inspection robots are becoming more and more popular. In the paper, it is proposed to use a mobile unmanned ground vehicle (UGV) platform equipped with various data acquisition systems for supporting inspection procedures. Although maintenance staff with appropriate experience are able to identify problems almost immediately, due to mentioned harsh conditions such as temperature, humidity, poisonous gas risk, etc., their presence in dangerous areas is limited. Thus, it is recommended to use inspection robots collecting data and appropriate algorithms for their processing. In this paper, the authors propose red-green-blue (RGB) and infrared (IR) image fusion to detect overheated idlers. An original procedure for image processing is proposed, that exploits some characteristic features of conveyors to pre-process the RGB image to minimize non-informative components in the pictures collected by the robot. Then, the authors use this result for IR image processing to improve SNR and finally detect hot spots in IR image. The experiments have been performed on real conveyors operating in industrial conditions.


Author(s):  
Venkata Sirimuvva Chirala ◽  
Saravanan Venkatachalam ◽  
Jonathon Smereka ◽  
Sam Kassoumeh

Abstract There has been unprecedented development in the field of unmanned ground vehicles (UGVs) over the past few years. UGVs have been used in many fields including civilian and military with applications such as military reconnaissance, transportation, and search and research missions. This is due to their increasing capabilities in terms of performance, power, and tackling risky missions. The level of autonomy given to these UGVs is a critical factor to consider. In many applications of multi-robotic systems like “search-and-rescue” missions, teamwork between human and robots is essential. In this paper, given a team of manned ground vehicles (MGVs) and unmanned ground vehicles (UGVs), the objective is to develop a model which can minimize the number of teams and total distance traveled while considering human-robot interaction (HRI) studies. The human costs of managing a team of UGVs by a manned ground vehicle (MGV) are based on human-robot interaction (HRI) studies. In this research, we introduce a combinatorial, multi objective ground vehicle path planning problem which takes human-robot interactions into consideration. The objective of the problem is to find: ideal number of teams of MGVs-UGVs that follow a leader-follower framework where a set of UGVs follow an MGV; and path for each team such that the missions are completed efficiently.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 404
Author(s):  
Ching-Wei Chang ◽  
Li-Yu Lo ◽  
Hiu Ching Cheung ◽  
Yurong Feng ◽  
An-Shik Yang ◽  
...  

This work aimed to develop an autonomous system for unmanned aerial vehicles (UAVs) to land on moving platforms such as an automobile or a marine vessel, providing a promising solution for a long-endurance flight operation, a large mission coverage range, and a convenient recharging ground station. Unlike most state-of-the-art UAV landing frameworks that rely on UAV onboard computers and sensors, the proposed system fully depends on the computation unit situated on the ground vehicle/marine vessel to serve as a landing guidance system. Such a novel configuration can therefore lighten the burden of the UAV, and the computation power of the ground vehicle/marine vessel can be enhanced. In particular, we exploit a sensor fusion-based algorithm for the guidance system to perform UAV localization, whilst a control method based upon trajectory optimization is integrated. Indoor and outdoor experiments are conducted, and the results show that precise autonomous landing on a 43 cm × 43 cm platform can be performed.


2022 ◽  
Vol 12 (1) ◽  
pp. 525
Author(s):  
Yasuhiro Fukuoka ◽  
Kazuyuki Oshino ◽  
Ahmad Najmuddin Ibrahim

We propose a mechanical design for a simple teleoperated unmanned ground vehicle (UGV) to negotiate uneven terrain. UGVs are typically classified into legged, legged-wheeled, wheeled, and tanked forms. Legged vehicles can significantly shift their center of gravity (COG) by positioning their multi-articulated legs at appropriate trajectories, stepping over a high obstacle. To realize a COG movable mechanism with a small number of joints, a number of UGVs have been developed that can shift their COG by moving a mass at a high position above the body. However, these tend to pose a risk of overturning, and the mass must be moved quite far to climb a high step. To address these issues, we design a novel COG shift mechanism, in which the COG can be shifted forward and backward inside the body by moving most of its internal devices. Since this movable mass includes DC motors for driving both tracks, we can extend the range of the COG movement. We demonstrate that a conventional tracked vehicle prototype can traverse a step and a gap between two steps, as well as climb stairs and a steep slope, with a human operating the vehicle movement and the movable mass position.


2022 ◽  
Vol 517 ◽  
pp. 230704
Author(s):  
Weida Wang ◽  
Yincong Chen ◽  
Chao Yang ◽  
Ying Li ◽  
Bin Xu ◽  
...  

Author(s):  
Haijie Guan ◽  
Shaobin Wu ◽  
Shaohang Xu ◽  
Jianwei Gong ◽  
Wenkai Zhou

This paper describes a planning framework of environment detection for unmanned ground vehicle (UGV) in the completely unknown off-road environment, which is able to quickly guide the UGV with nonholonomic constraints to detect the environmental information as much as possible. The contributions of this paper contain four fold. First, due to the sensor characteristics of camera and lidar, we present a two-layer combined detection map which can accurately represent the detected and undetected area. Second a frontier extraction algorithm based on RRT considering information acquisition and nonholonomic constraints of UGV is used to extract the target pose. Third, we use a search path planning method based on motion primitive which is able to handle obstacle constraints of environment, nonholonomic constraints of UGV. Fourth the heuristic fusion is proposed to guide the extension of motion primitives to generate a kinodynamically feasible and collision-free trajectory in real-time. And it works well in both simulation and real scene.


Author(s):  
S Bal

The hydrodynamic performance of three-dimensional WIG (Wing-In-Ground) vehicle moving with a constant speed above free water surface has been predicted by an Iterative Boundary Element Method (IBEM). IBEM originally developed for 3-D hydrofoils moving under free surface has been modified and extended to 3-D WIGs moving above free water surface. The integral equation based on Green's theorem can be divided into two parts: (1) the wing part, (2) free surface part. These two problems are solved separately, with the effects of one on the other being accounted for in an iterative manner. Both the wing part including the wake surface and the free surface part have been modelled with constant strength dipole and source panels. The effects of Froude number, the height of the hydrofoil from free surface, the sweep, dihedral and anhedral angles on the lift and drag coefficients are discussed for swept and V-type WIGs.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8312
Author(s):  
Jiafeng Wu ◽  
Xianghua Ma ◽  
Tongrui Peng ◽  
Haojie Wang

In recent decades, the Timed Elastic Band (TEB) algorithm is widely used for the AGV local path panning because of its convenient and efficiency. However, it may make a local detour when encountering a curve turn and cause excessive energy consumption. To solve this problem, this paper proposed an improved TEB algorithm to make the AGV walk along the wall when turning, which shortens the planning time and saves energy. Experiments were implemented in the Rviz visualization tool platform of the robot operating system (ROS). Simulated experiment results reflect that an amount of 5% reduction in the planning time has been achieved and the velocity curve implies that the operation was relatively smooth. Practical experiment results demonstrate the effectiveness and feasibility of the proposed method that the robots can avoid obstacles smoothly in the unknown static and dynamic obstacle environment.


Export Citation Format

Share Document