Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

protease inhibitor
Recently Published Documents


TOTAL DOCUMENTS

5674
(FIVE YEARS 347)

H-INDEX

122
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Oktawia Osiecka ◽  
Joanna Skrzeczynska-Moncznik ◽  
Agnieszka Morytko ◽  
Angelika Mazur ◽  
Pawel Majewski ◽  
...  

Eosinophils and secretory leukocyte protease inhibitor (SLPI) are both associated with Th2 immune responses and allergic diseases, but whether the fact that they are both implicated in these conditions is pathophysiologically related remains unknown. Here we demonstrate that human eosinophils derived from normal individuals are one of the major sources of SLPI among circulating leukocytes. SLPI was found to be stored in the crystalline core of eosinophil granules, and its dislocation/rearrangement in the crystalline core likely resulted in changes in immunostaining for SLPI in these cells. High levels of SLPI were also detected in blood eosinophils from patients with allergy-associated diseases marked by eosinophilia. These include individuals with eosinophilic granulomatosis with polyangiitis (EGPA) and atopic dermatitis (AD), who were also found to have elevated SLPI levels in their plasma. In addition to the circulating eosinophils, diseased skin of AD patients also contained SLPI-positive eosinophils. Exogenous, recombinant SLPI increased numbers of migratory eosinophils and supported their chemotactic response to CCL11, one of the key chemokines that regulate eosinophil migratory cues. Together, these findings suggest a role for SLPI in controlling Th2 pathophysiologic processes via its impact on and/or from eosinophils.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Songyan Wang ◽  
Cliff J. Luke ◽  
Stephen C. Pak ◽  
Victoria Shi ◽  
Liyun Chen ◽  
...  

AbstractThe endogenous lysosomal cysteine protease inhibitor SERPINB3 (squamous cell carcinoma antigen 1, SCCA1) is elevated in patients with cervical cancer and other malignancies. High serum SERPINB3 is prognostic for recurrence and death following chemoradiation therapy. Cervical cancer cells genetically lacking SERPINB3 are more sensitive to ionizing radiation (IR), suggesting this protease inhibitor plays a role in therapeutic response. Here we demonstrate that SERPINB3-deficient cells have enhanced sensitivity to IR-induced cell death. Knock out of SERPINB3 sensitizes cells to a greater extent than cisplatin, the current standard of care. IR in SERPINB3 deficient cervical carcinoma cells induces predominantly necrotic cell death, with biochemical and cellular features of lysoptosis. Rescue with wild-type SERPINB3 or a reactive site loop mutant indicates that protease inhibitory activity is required to protect cervical tumor cells from radiation-induced death. Transcriptomics analysis of primary cervix tumor samples and genetic knock out demonstrates a role for the lysosomal protease cathepsin L in radiation-induced cell death in SERPINB3 knock-out cells. These data support targeting of SERPINB3 and lysoptosis to treat radioresistant cervical cancers.


2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Hossein Mazaherpour ◽  
Masoomeh Sofian ◽  
Elham Farahani ◽  
Alireza Abdi ◽  
Sakine Mazaherpour ◽  
...  

Several therapeutic regimens for COVID-19 have been studied, such as combination antiviral therapies. We aimed to compare outcome of two types of combination therapies atazanavir/ritonavir (ATV/r) or lopinavir/ritonavir (LPV/r) plus hydroxychloroquine among COVID-19 patients. 108 patients with moderate and severe forms of COVID-19 were divided into two groups (each group 54 patients). One group received ATV/r plus hydroxychloroquine, and the other group received hydroxychloroquine plus LPV/r. Then, both groups were evaluated and compared for clinical symptoms, recovery rates, and complications of treatment regimens. Our findings showed a significant increase in bilirubin in ATV/r-receiving group compared to LPV/r receivers. There was also a significant increase in arrhythmias in the LPV/r group compared to the ATV/r group during treatment. Other findings including length of hospital stay, outcome, and treatment complications were not statistically significant. There is no significant difference between protease inhibitor drugs including ATV/r and LPV/r in the treatment of COVID-19 regarding clinical outcomes. However, some side effects such as hyperbilirubinemia and arrhythmia were significantly different by application of atazanavir or lopinavir.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 95
Author(s):  
Santanu Biswas ◽  
Emily Chen ◽  
Yamei Gao ◽  
Sherwin Lee ◽  
Indira Hewlett ◽  
...  

The impact of steroid hormones estrogen and progesterone on human immunodeficiency virus type 1 (HIV-1) replication is well documented. However, the exact mechanism involved in the regulation of HIV-1 replication by estrogen and progesterone is still unclear. In the present study, we wanted to elucidate the molecular mechanisms underlying the modulation of HIV-1 replication by estrogen and progesterone. To achieve this goal, we used real-time quantitative PCR arrays (PCR arrays) to identify differentially expressed host genes in response to hormone treatments that are involved in antiviral responses. Our in vitro results suggest that treatment with high doses of estrogen and progesterone promotes the expression of host antiviral factors Secretory leukocyte protease inhibitor (SLPI) and Serpin family C member 1 (SERPIN C1) among others produced in response to HIV-1 infection. SLPI is an enzyme that inhibits human leukocyte elastase, human cathepsin G, human trypsin, neutrophil elastase, and mast cell chymase. SERPIN C1 is a plasma protease inhibitor that regulates the blood coagulation cascade by the inhibition of thrombin and other activated serine proteases of the coagulation system. A dose dependent downmodulation of HIV-1 replication was observed in monocyte-derived macrophages (MDMs) pre-treated with the two proteins SLPI and SERPIN C1. Further investigations suggests that the host antiviral factors, SLPI and SERPIN C1 act at the pre-integration stage, inhibiting HIV-1 viral entry and leading to the observed downmodulation of HIV-1 replication. Our studies would help identify molecular mechanisms and pathways involved in HIV-1 pathogenesis.


2022 ◽  
Vol 20 ◽  
pp. 205873922110565
Author(s):  
Young-Duck Cho ◽  
Sung-Hyuk Choi ◽  
Sung-Jun Park ◽  
Jung-Youn Kim ◽  
Chae-Seung Lim ◽  
...  

Introduction:Among major trauma patients in the emergency department, the leading cause of morbidity and mortality is a hemorrhagic shock. The low oxygen flow with hypovolemia in trauma patients is believed to play a significant role. Hence, oxygen supply is essential in severe trauma patients with massive hemorrhage. This study aimed to investigate the effect of oxygen supply in hypoxic condition and variable treatments such as pentoxifylline (PTX), glycerol, hypertonic saline (HTS), protease inhibitor, and dexamethasone (DEXA) in macrophage and T cells. Method:Nitric oxide synthase (iNOS) and macrophage migration inhibitory factor (MIF) were measured for macrophage. MIF, interleukin (IL)-2, and IL-8 were measured for T cells. T cell viability was measued by MTT assay. Results: Pentoxifylline decreased iNOS expression mostly followed by glycerol under hypoxia. Under the hyperoxia, PTX and other treatments decreased iNOS expressions in macrophage. MIF expression was lowered with PTX under hypoxia. PTX, glycerol, HTS, and protease inhibitor were effective under hyperoxia in macrophage. PTX increased T cell survival under hypoxia. Under the hyperoxia, IL-2 expressions were upregulated with PTX, glycerol, and HTS. PTX and other treatments were effective for IL-8. Our results indicate that the PTX and the other agents tested reversed the effects of stimulation of lipopolysaccharide, PGE2 in hypoxia or hypoxia. Conclusion:Our study demonstrated potential usefulness in improving immune systems during severe inflammatory conditions similar to septic shock possibly caused by massive hemorrhage.


2021 ◽  
Vol 23 (1) ◽  
pp. 393
Author(s):  
Sebastjan Kralj ◽  
Marko Jukič ◽  
Urban Bren

Since December 2019, the new SARS-CoV-2-related COVID-19 disease has caused a global pandemic and shut down the public life worldwide. Several proteins have emerged as potential therapeutic targets for drug development, and we sought out to review the commercially available and marketed SARS-CoV-2-targeted libraries ready for high-throughput virtual screening (HTVS). We evaluated the SARS-CoV-2-targeted, protease-inhibitor-focused and protein–protein-interaction-inhibitor-focused libraries to gain a better understanding of how these libraries were designed. The most common were ligand- and structure-based approaches, along with various filtering steps, using molecular descriptors. Often, these methods were combined to obtain the final library. We recognized the abundance of targeted libraries offered and complimented by the inclusion of analytical data; however, serious concerns had to be raised. Namely, vendors lack the information on the library design and the references to the primary literature. Few references to active compounds were also provided when using the ligand-based design and usually only protein classes or a general panel of targets were listed, along with a general reference to the methods, such as molecular docking for the structure-based design. No receptor data, docking protocols or even references to the applied molecular docking software (or other HTVS software), and no pharmacophore or filter design details were given. No detailed functional group or chemical space analyses were reported, and no specific orientation of the libraries toward the design of covalent or noncovalent inhibitors could be observed. All libraries contained pan-assay interference compounds (PAINS), rapid elimination of swill compounds (REOS) and aggregators, as well as focused on the drug-like model, with the majority of compounds possessing their molecular mass around 500 g/mol. These facts do not bode well for the use of the reviewed libraries in drug design and lend themselves to commercial drug companies to focus on and improve.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Hemangi Ranade ◽  
Priya Paliwal ◽  
Anis Ahmad Chaudhary ◽  
Sakshi Piplani ◽  
Hassan Ahmed Rudayni ◽  
...  

Background: Epithelial ovarian cancer remains one of the leading variants of gynecological cancer with a high mortality rate. Feasibility and technical competence for screening and detection of epithelial ovarian cancer remain a major obstacle and the development of point of care diagnostics (POCD) may offer a simple solution for monitoring its progression. Cathepsins have been implicated as biomarkers for cancer progression and metastasis; being a protease, it has an inherent tendency to interact with Cystatin C, a cysteine protease inhibitor. This interaction was assessed for designing a POCD module. Methods: A combinatorial approach encompassing computational, biophysical and electron-transfer kinetics has been used to assess this protease-inhibitor interaction. Results: Calculations predicted two cathepsin candidates, Cathepsin K and Cathepsin L based on their binding energies and structural alignment and both predictions were confirmed experimentally. Differential pulse voltammetry was used to verify the potency of Cathepsin K and Cathepsin L interaction with Cystatin C and assess the selectivity and sensitivity of their electrochemical interactions. Electrochemical measurements indicated selectivity for both the ligands, but with increasing concentrations, there was a marked difference in the sensitivity of the detection. Conclusions: This work validated the utility of dry-lab integration in the wet-lab technique to generate leads for the design of electrochemical diagnostics for epithelial ovarian cancer.


2021 ◽  
Vol 17 (2) ◽  
pp. 160-171
Author(s):  
Taufik Muhammad Fakih ◽  
Mentari Luthfika Dewi

Background: Human immunodeficiency virus/acquired immunodeficiency syndrome (HIV or AIDS) is a disease related to the human immune system. Given its important role in viral replication, HIV1 protease (HIV1 PR) becomes the major therapeutic target in the treatment of AIDS. In this case, we need a dynamic aspect of molecular interactions that can demonstrate the important role of conformational variability in the design of HIV1 PR inhibitors. There are several inhibitor candidates from marine organisms, such as the LLEYSL and LLEYSI bioactive peptides produced by oysters (Crassostrea gigas). Objective: Proteinpeptide docking method was used in silico to identify, evaluate, and explore the molecular interactions between bioactive peptide molecules and HIV-1 protease macromolecules. Methods: The sequencing of bioactive peptide molecules was modeled into 3D conformation using the PEPFOLD software. The best conformation was chosen for the study of molecular interactions against HIV1 protease macromolecules using the PatchDock software. The molecular interactions formed were further observed using the BIOVIA Discovery Studio 2020 software. Results: The results of this study indicated that the LLEYSL bioactive peptide had the best affinity with an ACE score of minus 1284.70 kJ per mol. Conclusion: Bioactive peptide molecule is predicted to be a candidate for HIV1 protease inhibitor. Keywords: AIDS, HIV1 protease, bioactive peptides, protein-peptide docking, in silico


Export Citation Format

Share Document