Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

absolute quantification
Recently Published Documents


TOTAL DOCUMENTS

1033
(FIVE YEARS 291)

H-INDEX

67
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 900
Author(s):  
Taja Jeseničnik ◽  
Nataša Štajner ◽  
Sebastjan Radišek ◽  
Ajay Kumar Mishra ◽  
Katarina Košmelj ◽  
...  

Verticillium nonalfalfae (V. nonalfalfae) is one of the most problematic hop (Humulus lupulus L.) pathogens, as the highly virulent fungal pathotypes cause severe annual yield losses due to infections of entire hop fields. In recent years, the RNA interference (RNAi) mechanism has become one of the main areas of focus in plant—fungal pathogen interaction studies and has been implicated as one of the major contributors to fungal pathogenicity. MicroRNA-like RNAs (milRNAs) have been identified in several important plant pathogenic fungi; however, to date, no milRNA has been reported in the V. nonalfalfae species. In the present study, using a high-throughput sequencing approach and extensive bioinformatics analysis, a total of 156 milRNA precursors were identified in the annotated V. nonalfalfae genome, and 27 of these milRNA precursors were selected as true milRNA candidates, with appropriate microRNA hairpin secondary structures. The stem-loop RT-qPCR assay was used for milRNA validation; a total of nine V. nonalfalfae milRNAs were detected, and their expression was confirmed. The milRNA expression patterns, determined by the absolute quantification approach, imply that milRNAs play an important role in the pathogenicity of highly virulent V. nonalfalfae pathotypes. Computational analysis predicted milRNA targets in the V. nonalfalfae genome and in the host hop transcriptome, and the activity of milRNA-mediated RNAi target cleavage was subsequently confirmed for two selected endogenous fungal target gene models using the 5′ RLM-RACE approach.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sergio Murolo ◽  
Marwa Moumni ◽  
Valeria Mancini ◽  
Mohamed Bechir Allagui ◽  
Lucia Landi ◽  
...  

Stagonosporopsis cucurbitacearum is an important seedborne pathogen of squash (Cucurbita maxima). The aim of our work was to develop a rapid and sensitive diagnostic tool for detection and quantification of S. cucurbitacearum in squash seed samples, to be compared with blotter analysis, that is the current official seed test. In blotter analysis, 29 of 31 seed samples were identified as infected, with contamination from 1.5 to 65.4%. A new set of primers (DB1F/R) was validated in silico and in conventional, quantitative real-time PCR (qPCR) and droplet digital (dd) PCR. The limit of detection of S. cucurbitacearum DNA for conventional PCR was ∼1.82 × 10–2 ng, with 17 of 19 seed samples positive. The limit of detection for ddPCR was 3.6 × 10–3 ng, which corresponded to 0.2 copies/μl. Detection carried out with artificial samples revealed no interference in the absolute quantification when the seed samples were diluted to 20 ng. All seed samples that showed S. cucurbitacearum contamination in the blotter analysis were highly correlated with the absolute quantification of S. cucurbitacearum DNA (copies/μl) in ddPCR (R2 = 0.986; p ≤ 0.01). Our ddPCR protocol provided rapid detection and absolute quantification of S. cucurbitacearum, offering a useful support to the standard procedure.


Proteomes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Aarón Millán-Oropeza ◽  
Mélisande Blein-Nicolas ◽  
Véronique Monnet ◽  
Michel Zivy ◽  
Céline Henry

In proteomics, it is essential to quantify proteins in absolute terms if we wish to compare results among studies and integrate high-throughput biological data into genome-scale metabolic models. While labeling target peptides with stable isotopes allow protein abundance to be accurately quantified, the utility of this technique is constrained by the low number of quantifiable proteins that it yields. Recently, label-free shotgun proteomics has become the “gold standard” for carrying out global assessments of biological samples containing thousands of proteins. However, this tool must be further improved if we wish to accurately quantify absolute levels of proteins. Here, we used different label-free quantification techniques to estimate absolute protein abundance in the model yeast Saccharomyces cerevisiae. More specifically, we evaluated the performance of seven different quantification methods, based either on spectral counting (SC) or extracted-ion chromatogram (XIC), which were applied to samples from five different proteome backgrounds. We also compared the accuracy and reproducibility of two strategies for transforming relative abundance into absolute abundance: a UPS2-based strategy and the total protein approach (TPA). This study mentions technical challenges related to UPS2 use and proposes ways of addressing them, including utilizing a smaller, more highly optimized amount of UPS2. Overall, three SC-based methods (PAI, SAF, and NSAF) yielded the best results because they struck a good balance between experimental performance and protein quantification.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Moritz Späth ◽  
Maximilian Rohde ◽  
Dongqin Ni ◽  
Ferdinand Knieling ◽  
Florian Stelzle ◽  
...  

AbstractVarious clinically applicable scores and indices are available to help identify the state of a microcirculatory disorder in a patient. Several of these methods, however, leave room for interpretation and only provide clues for diagnosis. Thus, a measurement method that allows a reliable detection of impending or manifest circulatory malfunctions would be of great value. In this context, the optical and non-invasive method of shifted position-diffuse reflectance imaging (SP-DRI) was developed. It allows to determine the capillary diameter and thus to assess the state of the microcirculation. The aim of the present study is to investigate how the quantification of capillary diameters by SP-DRI behaves in different individuals, i.e. for a wide range of optical properties. For this, within Monte-Carlo simulations all optical properties (seven skin layers, hemoglobin) were randomly varied following a Gaussian distribution. An important finding from the present investigation is that SP-DRI works when the optical properties are chosen randomly. Furthermore, it is shown that appropriate data analysis allows calibration-free absolute quantification of the capillary diameter across individuals using SP-DRI. This underpins the potential of SP-DRI to serve as an early alert system for the onset of microcirculatory associated diseases.


2022 ◽  
Vol 8 (1) ◽  
pp. 55
Author(s):  
Pierluigi Reveglia ◽  
Maria Luisa Raimondo ◽  
Marco Masi ◽  
Alessio Cimmino ◽  
Genoveffa Nuzzo ◽  
...  

Grapevine (Vitis vinifera L.) can be affected by many different biotic agents, including tracheomycotic fungi such as Phaeomoniella chlamydospora and Phaeoacremonium minimum, which are the main causal agent of Esca and Petri diseases. Both fungi produce phytotoxic naphthalenone polyketides, namely scytalone and isosclerone, that are related to symptom development. The main objective of this study was to investigate the secondary metabolites produced by three Phaeoacremonium species and to assess their phytotoxicity by in vitro bioassay. To this aim, untargeted and targeted LC-MS/MS-based metabolomics were performed. High resolution mass spectrometer UHPLC-Orbitrap was used for the untargeted profiling and dereplication of secondary metabolites. A sensitive multi reaction monitoring (MRM) method for the absolute quantification of scytalone and isosclerone was developed on a UPLC-QTrap. Different isolates of P. italicum, P. alvesii and P. rubrigenum were grown in vitro and the culture filtrates and organic extracts were assayed for phytotoxicity. The toxic effects varied within and among fungal isolates. Isosclerone and scytalone were dereplicated by matching retention times and HRMS and MS/MS data with pure standards. The amount of scytalone and isosclerone differed within and among fungal species. To our best knowledge, this is the first study that applies an approach of LC-MS/MS-based metabolomics to investigate differences in the metabolic composition of organic extracts of Phaeoacremonium species culture filtrates.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Xinlong Wang ◽  
Liang-Chieh Ma ◽  
Sadra Shahdadian ◽  
Anqi Wu ◽  
Nghi Cong Dung Truong ◽  
...  

Billions of neurons in the human brain form neural networks with oscillation rhythms. Infra-slow oscillation (ISO) presents three main physiological sources: endogenic, neurogenic, and myogenic vasomotions. Having an in vivo methodology for the absolute quantification of ISO from the human brain can facilitate the detection of brain abnormalities in cerebral hemodynamic and metabolic activities. In this study, we introduced a novel measurement-plus-analysis framework for the non-invasive quantification of prefrontal ISO by (1) taking dual-channel broadband near infrared spectroscopy (bbNIRS) measurements from 12 healthy humans during a 6-min rest and 4-min post transcranial photobiomodulation (tPBM) and (2) performing wavelet transform coherence (WTC) analysis on the measured time series data. The WTC indexes (IC, between 0 and 1) enabled the assessment of ipsilateral hemodynamic-metabolic coherence and bilateral functional connectivity in each ISO band of the human prefrontal cortex. At rest, bilateral hemodynamic connectivity was consistent across the three ISO bands (IC ≅ 0.66), while bilateral metabolic connectivity was relatively weaker. For post-tPBM/sham comparison, our analyses revealed three key findings: 8-min, right-forehead, 1064-nm tPBM (1) enhanced the amplitude of metabolic oscillation bilaterally, (2) promoted the bilateral metabolic connectivity of neurogenic rhythm, and (3) made the main effect on endothelial cells, causing alteration of hemodynamic-metabolic coherence on each side of the prefrontal cortex.


2022 ◽  
Author(s):  
Wenge Liu ◽  
Jin Luo ◽  
Qiaoyun Ren ◽  
Qilin Wang ◽  
Jing Li ◽  
...  

Abstract Background: Ticks are important parasites that cause more diseases than most other animal parasites. Haemaphysalis longicornis is used as an experimental animal model for the study of three-host ticks due to its special life cycle and easy maintenance in the laboratory and in its reproduction. The life cycle of H. longicornis goes through a tightly regulated life cycle to adapt to the changing host and environment, and these stages of transition are also accompanied by proteome changes in the body. Methods: In this study, the aim was to use the isobaric tags for relative and absolute quantification (iTRAQ) technique to systematically describe and analyze the dynamic expression of protein and the molecular basis of the proteome of H. longicornis in seven differential developmental stages (eggs, unfed larvae, fed larvae, unfed nymphs, fed nymphs unfed adults, and fed adults). Results: A total of 2,059 proteins were identified, and their expression profiles were classified at different developmental stages. In addition, it was found that tissue and organ development-related proteins and metabolism-related proteins showed that they were involved in different physiological processes throughout the life cycle through the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the differentially expressed proteins (DEPs). More importantly, we found that the upregulated proteins of fed adult ticks were mainly related to yolk absorption, degradation, and ovarian development-related proteins. The abundance of the cuticle proteins in the unfed stages were significantly higher compared with those of the fed ticks in the previous stages. Conclusions: In short, the protein spectrum changes identified in this study provide a reference proteome for future studies of tick functional proteins and provide candidate targets for elucidating tick development and developing new tick control strategies.


2021 ◽  
Author(s):  
Ignacy Rzagalinski ◽  
Aliona Bogdanova ◽  
Bharath Kumar Raghuraman ◽  
Eric R. Geertsma ◽  
Lena Hersemann ◽  
...  

Absolute (molar) quantification of proteins provides the analytical rationale for system-level modelling of diverse molecular mechanisms. FastCAT method employs multiple short (<50 kDa) stable-isotope labeled chimeric proteins (CPs) composed of concatenated quantotypic (Q-) peptides representing the quantified proteins. Each CP also comprises scrambled sequences of reference (R-) peptides that relate its abundance to a single protein standard (BSA). FastCAT not only alleviates the need in purifying CP or using SDS-PAGE, but also improves the accuracy, precision and dynamic range of the absolute quantifications by grouping Q-peptides according to the expected abundance of target proteins. We benchmarked FastCAT against the reference method of MS Western and tested it in the direct molar quantifications of neurological markers in human cerebrospinal fluid at the low ng/mL level.


2021 ◽  
Author(s):  
Ada Hang-Heng Wong ◽  
Semih Can Akincilar ◽  
Joelle Yi Heng Chua ◽  
Dhakshayini d/o K. Chanthira Morgan ◽  
Dorcas Hei ◽  
...  

Droplet microfluidics provides a miniaturized platform to conduct biological assays. We previously developed a droplet microfluidic chip assay for screening cancer cells against chemical drugs and chimeric antigen receptor T (CAR-T) cells, respectively. In this study, we investigated chip application on a cytokine expression assay using MCF7 breast cancer reporter cells engineered by fusing green fluorescent protein (GFP) to the C-terminus of endogenous interleukin-6 (IL6) gene. Combined tumor necrosis factor alpha (TNFalpha) treatment and serum-free medium starvation stimulated IL6-GFP expression and enhanced GFP fluorescence. Our data showed that on-chip assay recapitulates the cellular response in vitro, although absolute quantification of IL6 induction could not be accomplished. The demonstration of multi-timepoint IL6 expression analysis paves the way for our future study on tumor response to immune attack via cytokine signaling.


Export Citation Format

Share Document