Asymmetric catalysis is the preferred method for the synthesis of pure chiral molecules in the fine chemical industry. Cellulose has long been sought as a support in enantioselective catalysis. Dialdehyde cellulose (DAC) is produced by the selective oxidation of cellulose and is used to bind 5,5′-diamino Binap by forming a Schiff base. Here, we report the synthesis of modified cellulose-supported Rh as a novel biomass-supported catalyst and the characterization of its morphology, composition, and thermal stability. DAC-BINAP-Rh was a very effective catalyst in the asymmetric hydrogenation of enamides and could be easily recycled. This work provides a novel supported catalyst that broadens the applications of cellulose in asymmetric catalysis.