Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

protein gp41
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 7)

H-INDEX

19
(FIVE YEARS 1)

Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1599
Author(s):  
Nejat Düzgüneş ◽  
Narcis Fernandez-Fuentes ◽  
Krystyna Konopka

Fusion of lipid-enveloped viruses with the cellular plasma membrane or the endosome membrane is mediated by viral envelope proteins that undergo large conformational changes following binding to receptors. The HIV-1 fusion protein gp41 undergoes a transition into a “six-helix bundle” after binding of the surface protein gp120 to the CD4 receptor and a co-receptor. Synthetic peptides that mimic part of this structure interfere with the formation of the helix structure and inhibit membrane fusion. This approach also works with the S spike protein of SARS-CoV-2. Here we review the peptide inhibitors of membrane fusion involved in infection by influenza virus, HIV-1, MERS and SARS coronaviruses, hepatitis viruses, paramyxoviruses, flaviviruses, herpesviruses and filoviruses. We also describe recent computational methods used for the identification of peptide sequences that can interact strongly with protein interfaces, with special emphasis on SARS-CoV-2, using the PePI-Covid19 database.


2021 ◽  
pp. 167345
Author(s):  
Nhi Tran ◽  
Younghoon Oh ◽  
Madeleine Sutherland ◽  
Qiang Cui ◽  
Mei Hong

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Ivanusic ◽  
Kazimierz Madela ◽  
Norbert Bannert ◽  
Joachim Denner

AbstractHuman immunodeficiency virus type 1 (HIV-1) persists lifelong in infected individuals and has evolved unique strategies in order to evade the immune system. One of these strategies is the direct cell-to-cell spread of HIV-1. The formation of a virological synapse (VS) between donor and target cell is important for this process. Tetraspanins are cellular proteins that are actively involved in the formation of a VS. However, the molecular mechanisms of recruiting host proteins for the cell–cell transfer of particles to the VS remains unclear. Our study has mapped the binding site for the transmembrane envelope protein gp41 of HIV-1 within the large extracellular loop (LEL) of CD63 and showed that this interaction occurs predominantly at the VS between T cells where viral particles are transferred. Mutations within the highly conserved CCG motif of the tetraspanin superfamily abrogated recruiting of expressed HIV-1 GFP fused Gag core protein and CD63 to the VS. This demonstrates the biological significance of CD63 for enhanced formation of a VS. Since cell–cell spread of HIV-1 is a major route of persistent infection, these results highlight the central role of CD63 as a member of the tetraspanin superfamily during HIV-1 infection and pathogenesis.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009417
Author(s):  
Kathy Triantafilou ◽  
Christopher J. K. Ward ◽  
Magdalena Czubala ◽  
Robert G. Ferris ◽  
Emma Koppe ◽  
...  

Macrophages are important drivers of pathogenesis and progression to AIDS in HIV infection. The virus in the later phases of the infection is often predominantly macrophage-tropic and this tropism contributes to a chronic inflammatory and immune activation state that is observed in HIV patients. Pattern recognition receptors of the innate immune system are the key molecules that recognise HIV and mount the inflammatory responses in macrophages. The innate immune response against HIV-1 is potent and elicits caspase-1-dependent pro-inflammatory cytokine production of IL-1β and IL-18. Although, NLRP3 has been reported as an inflammasome sensor dictating this response little is known about the pattern recognition receptors that trigger the “priming” signal for inflammasome activation, the NLRs involved or the HIV components that trigger the response. Using a combination of siRNA knockdowns in monocyte derived macrophages (MDMs) of different TLRs and NLRs as well as chemical inhibition, it was demonstrated that HIV Vpu could trigger inflammasome activation via TLR4/NLRP3 leading to IL-1β/IL-18 secretion. The priming signal is triggered via TLR4, whereas the activation signal is triggered by direct effects on Kv1.3 channels, causing K+ efflux. In contrast, HIV gp41 could trigger IL-18 production via NAIP/NLRC4, independently of priming, as a one-step inflammasome activation. NAIP binds directly to the cytoplasmic tail of HIV envelope protein gp41 and represents the first non-bacterial ligand for the NAIP/NLRC4 inflammasome. These divergent pathways represent novel targets to resolve specific inflammatory pathologies associated with HIV-1 infection in macrophages.


2020 ◽  
Author(s):  
Daniel Ivanusic ◽  
Kazimierz Madela ◽  
Norbert Bannert ◽  
Joachim Denner

Abstract Human immunodeficiency virus type 1 (HIV-1) persists lifelong in infected individuals and has evolved unique strategies in order to evade the immune system. One of these strategies is the direct cell-to-cell spread of HIV-1. The formation of a virological synapse (VS) between donor and target cell is important for this process. Tetraspanins are cellular proteins that are actively involved in the formation of a VS. However, the molecular mechanisms of recruiting host proteins for the cell-cell transfer of particles to the VS remains unclear. Our study has mapped the binding site for the transmembrane envelope protein gp41 of HIV-1 within the large extracellular loop (LEL) of CD63 and showed that this interaction occurs predominantly at the VS between T cells where viral particles are transferred. Mutations within the highly conserved CCG motif of the tetraspanin superfamily abrogated recruiting of expressed HIV-1 GFP fused Gag core protein and CD63 to the VS. This demonstrates the biological significance of CD63 for enhanced formation of a VS. Since cell-cell spread of HIV-1 is a major route of persistent infection, these results highlight the central role of CD63 as a member of the tetraspanin superfamily during HIV-1 infection and pathogenesis.


2019 ◽  
Author(s):  
Takaharu Mori ◽  
Yuji Sugita

AbstractSurfactant micelles are often utilized as membrane mimetics for structure determination and functional analysis of membrane proteins. Although curved-surface effects of the micelle can perturb their structure, it is difficult to assess such effects and membrane mimetic artifacts by experimental and theoretical methods. Here, we propose an implicit micelle model (IMIC) to be used in molecular dynamics (MD) simulations of membrane proteins. IMIC is an extension of the IMM1 implicit membrane model by introducing a super-ellipsoid approximation to represent the curved-surface effects. Most of the parameters for IMIC are obtained from all-atom explicit solvent MD simulations of twelve membrane proteins in various micelles. In simulations of the HIV envelop protein gp41, M13 major coat protein gp8, and amyloid precursor protein (APP) dimer, curved-surface and compact hydrophobic-core effects are exhibited. The MD simulations with IMIC provide accurate structure predictions of membrane proteins in various micelle environments quickly with smaller computational cost than that necessary for explicit solvent/micelle model.


2018 ◽  
Vol 115 (37) ◽  
pp. E8652-E8659 ◽  
Author(s):  
Shuguang Zhang ◽  
Fei Tao ◽  
Rui Qing ◽  
Hongzhi Tang ◽  
Michael Skuhersky ◽  
...  

Structure and function studies of membrane proteins, particularly G protein-coupled receptors and multipass transmembrane proteins, require detergents. We have devised a simple tool, the QTY code (glutamine, threonine, and tyrosine), for designing hydrophobic domains to become water soluble without detergents. Here we report using the QTY code to systematically replace the hydrophobic amino acids leucine, valine, isoleucine, and phenylalanine in the seven transmembrane α-helices of CCR5, CXCR4, CCR10, and CXCR7. We show that QTY code-designed chemokine receptor variants retain their thermostabilities, α-helical structures, and ligand-binding activities in buffer and 50% human serum. CCR5QTY, CXCR4QTY, and CXCR7QTY also bind to HIV coat protein gp41-120. Despite substantial transmembrane domain changes, the detergent-free QTY variants maintain stable structures and retain their ligand-binding activities. We believe the QTY code will be useful for designing water-soluble variants of membrane proteins and other water-insoluble aggregated proteins.


2018 ◽  
Vol 92 (12) ◽  
Author(s):  
Yimeng Li ◽  
Shu Shen ◽  
Liangbo Hu ◽  
Fei Deng ◽  
Just M. Vlak ◽  
...  

ABSTRACTgp41, one of the baculovirus core genes, encodes the only recognized tegument (O-glycosylated) protein of the occlusion-derived virion (ODV) phenotype so far. A previous study using a temperature-sensitive Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) mutant showed that GP41 plays a crucial role in budded virion (BV) formation. However, the precise function of GP41 in the baculovirus replication cycle remains unclear. In this study, AcMNPV GP41 was found to accumulate around the ring zone (RZ) region within the infected nucleus and finally assembled into both BVs and ODVs. Deletion ofgp41from the AcMNPV genome showed that BVs were no longer formed and ODVs were no longer assembled, suggesting the essential role of this gene in baculovirus virion morphogenesis. In infected cells, besides the 42-kDa monomers, dimers and trimers were detected under nonreducing conditions, whereas only trimeric GP41 forms were selectively incorporated into BVs or ODVs. Mutations of all five cysteines in GP41 individually had minor effects on GP41 oligomer formation, albeit certain mutations impaired infectious BV production, suggesting flexibility in the intermolecular disulfide bonding. Single mutations of key leucines within two predicted leucine zipper-like motifs did not interfere with GP41 oligomerization or BV and ODV formation, but double leucine mutations completely blocked oligomerization of GP41 and progeny BV production. In the latter case, the usual subcellular localization, especially RZ accumulation, of GP41 was abolished. The above findings clearly point out a close correlation between GP41 oligomerization and function and therefore highlight the oligomeric state as the functional form of GP41 in the baculovirus replication cycle.IMPORTANCEThe tegument, which is sandwiched between the nucleocapsid and the virion envelope, is an important substructure of many enveloped viruses. It is composed of one or more proteins that have important functions during virus entry, replication, assembly, and egress. Unlike another large DNA virus (herpesvirus) that encodes an extensive set of tegument components, baculoviruses very likely exploit the major tegument protein, GP41, to execute functions in baculovirus virion morphogenesis and assembly. However, the function of this O-glycosylated baculovirus tegument protein remains largely unknown. In this study, we identified trimers as the functional structure of GP41 in baculovirus virion morphogenesis and showed that both disulfide bridging and protein-protein interactions via the two leucine zipper-like domains are involved in the formation of different oligomeric states. This study advances our understanding of the unique viral tegument protein GP41 participating in the life cycle of baculoviruses.


Export Citation Format

Share Document