Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

transcriptional regulator
Recently Published Documents


TOTAL DOCUMENTS

2113
(FIVE YEARS 311)

H-INDEX

100
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yanfei Zhang ◽  
Jeremy D. Cortez ◽  
Sarah K. Hammer ◽  
César Carrasco-López ◽  
Sergio Á. García Echauri ◽  
...  

AbstractBranched-chain amino acid (BCAA) metabolism fulfills numerous physiological roles and can be harnessed to produce valuable chemicals. However, the lack of eukaryotic biosensors specific for BCAA-derived products has limited the ability to develop high-throughput screens for strain engineering and metabolic studies. Here, we harness the transcriptional regulator Leu3p from Saccharomyces cerevisiae to develop a genetically encoded biosensor for BCAA metabolism. In one configuration, we use the biosensor to monitor yeast production of isobutanol, an alcohol derived from valine degradation. Small modifications allow us to redeploy Leu3p in another biosensor configuration that monitors production of the leucine-derived alcohol, isopentanol. These biosensor configurations are effective at isolating high-producing strains and identifying enzymes with enhanced activity from screens for branched-chain higher alcohol (BCHA) biosynthesis in mitochondria as well as cytosol. Furthermore, this biosensor has the potential to assist in metabolic studies involving BCAA pathways, and offers a blueprint to develop biosensors for other products derived from BCAA metabolism.


2022 ◽  
Author(s):  
Yumin Zhang ◽  
Song Liang ◽  
Zihao Pan ◽  
Yong Yu ◽  
Huochun Yao ◽  
...  

Abstract Streptococcus suis is an important emerging zoonosis that causes economic losses in the pig industry and severe threats to public health. Transcriptional regulators play essential roles in bacterial adaptation to host environments. In this study, we identified a novel XRE family transcriptional regulator in S. suis CZ130302, XtrSs, involved in the bacterial fitness to hydrogen peroxide stress. Based on electrophoretic mobility shift and β-galactosidase activity assays, we found that XtrSs autoregulated its own transcription and repressed the expression of its downstream gene psePs, a surface protein with unknown function in S. suis, by binding to a palindromic sequence from the promoter region. Furthermore, we proved that the deletion of the psePs gene attenuated bacterial antioxidant response. Phylogenetic analysis revealed that XtrSs and PsePs naturally co-existed as a combination in most S. suis genomes. Collectively, we demonstrated the binding characteristics of XtrSs in S. suis and provided a new insight that XtrSs played a critical role in modulating psePs to the hydrogen peroxide resistance of S. suis.


2022 ◽  
pp. 23-31
Author(s):  
Simon Vermeiren ◽  
Simon Desiderio ◽  
Eric J. Bellefroid

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ting-ting Yu ◽  
Tao Zhang ◽  
Fei Su ◽  
Ying-long Li ◽  
Li Shan ◽  
...  

In previous studies, we found that B7 homolog 3 (B7-H3) was highly expressed in lung adenocarcinoma (LUAD) and promoted epithelial-to-mesenchymal transition (EMT) of LUAD cells. However, the underlying molecular mechanism is unclear. This study is aimed at evaluating the role of Ets-like protein 1 (ELK1) as a transcriptional regulator of B7-H3 for mediating the development and progression of LUAD in vitro and in vivo. We confirmed that ELK1 is highly expressed in LUAD and is associated with poor patient prognosis. ELK1 was found to promote proliferation, invasion, migration, and EMT of LUAD cells through in vivo and in vitro experiments. In terms of mechanism, ELK1 binds to the B7-H3 promoter region and induces the upregulation of B7-H3 in LUAD. Our data suggest that ELK1 plays an important role in the development of LUAD and could be used as a prognostic marker and therapeutic target for LUAD.


2021 ◽  
Author(s):  
David M Picton ◽  
Joshua D Harling-Lee ◽  
Samuel J Duffner ◽  
Sam C Went ◽  
Richard D Morgan ◽  
...  

Bacteria are under constant assault by bacteriophages and other mobile genetic elements. As a result, bacteria have evolved a multitude of systems that protect from attack. Genes encoding bacterial defence mechanisms can be clustered into 'defence islands', providing a potentially synergistic level of protection against a wider range of assailants. However, there is a comparative paucity of information on how expression of these defence systems is controlled. Here, we functionally characterise a transcriptional regulator, BrxR, encoded within a recently described phage defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a combination of reporters and electrophoretic mobility shift assays, we discovered that BrxR acts as a repressor. We present the structure of BrxR to 2.15 Å, the first structure of this family of transcription factors, and pinpoint a likely binding site for ligands within the WYL-domain. Bioinformatic analyses demonstrated that BrxR homologues are widespread amongst bacteria. About half (48%) of identified BrxR homologues were co-localised with a diverse array of known phage defence systems, either alone or clustered into defence islands. BrxR is a novel regulator that reveals a common mechanism for controlling the expression of the bacterial phage defence arsenal.


Author(s):  
Atsushi Yokotani ◽  
Fumi Takahashi ◽  
Ryoko Aoyama ◽  
Go Kamoshida ◽  
Tadashi Kosaka ◽  
...  

Author(s):  
Małgorzata Płachetka ◽  
Michał Krawiec ◽  
Jolanta Zakrzewska-Czerwińska ◽  
Marcin Wolański

Streptomyces are well-known producers of valuable secondary metabolites which include a large variety of antibiotics and important model organisms for developmental studies in multicellular bacteria. The conserved transcriptional regulator AdpA of Streptomyces exerts a pleiotropic effect on cellular processes, including the morphological differentiation and biosynthesis of secondary metabolites.


Export Citation Format

Share Document