Polyurethane nanocomposites are promising materials in many industries, they have superior physical and mechanical properties compared to the original polyurethane. This paper presents an analysis of the physical and mechanical properties of polyurethane nano-composites with various types of fillers such as organoclays, carbon nanotubes, polyhedral oligomeric silse-squioxanes, graphene, graphene oxide, polytetrafluoroethylene, and metal nanoparticles. The concentration-dependent effects in changing the structure and properties of polyurethane composites under the influence of the added fillers were also considered. It is noted that the values of physical and mechanical properties are influenced by the uniform distribution of nanofiller particles in the composite and their chemical modification. It was found that with a uniform distribution of nanoparticles in the polymer matrix, the physicomechanical properties of the resulting composites increase.