Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

antimicrobial peptides
Recently Published Documents


TOTAL DOCUMENTS

4933
(FIVE YEARS 956)

H-INDEX

166
(FIVE YEARS 10)

2022 ◽  
Vol 24 (1) ◽  
pp. 288-309
Author(s):  
Govindaraj Vengateswari ◽  
◽  
Kandhasamy Lalitha ◽  
Muthugounder Subramanian Shivakumar ◽  
◽  
...  

Antimicrobial peptides constitute key factors in insect humoral immune response against invading microorganisms. In this study, biochemical approach was identified antimicrobial peptides which appeared in larval hemolymph of Spodoptera litura after bacterial challenge. HPLC profile showed two major peaks in two samples, Brassica oleracea and Ricinus communis fed S. litura that were collected at 5 min interval. It was shown to be active against Gram-positive and Gram-negative bacteria. The highest zone of inhibition was observed in Staphylococcus aureus and Escherichia coli in B. oleracea fed S. litura hemolymph fraction II and R. communis fed S. litura hemolymph fraction I and it also contributes the increased antioxidant, lysozyme, and less hemolytic activity were increase in treated groups. TLC activity was tested with hemolymph extract samples, pink color pots was identified the protein present in the samples. An SDS-PAGE result shows that high expression of antimicrobial peptide present in the treated sample. The appearance of peptides with such different properties in insect hemolymph in response to immune challenge indicates the complexity of the insect immune system.


2022 ◽  
Vol 2 ◽  
Author(s):  
Oleh Andrukhov ◽  
Alice Blufstein ◽  
Christian Behm

Antimicrobial defense is an essential component of host-microbial homeostasis and contributes substantially to oral health maintenance. Dental mesenchymal stromal cells (MSCs) possess multilineage differentiation potential, immunomodulatory properties and play an important role in various processes like regeneration and disease progression. Recent studies show that dental MSCs might also be involved in antibacterial defense. This occurs by producing antimicrobial peptides or attracting professional phagocytic immune cells and modulating their activity. The production of antimicrobial peptides and immunomodulatory abilities of dental MSCs are enhanced by an inflammatory environment and influenced by vitamin D3. Antimicrobial peptides also have anti-inflammatory effects in dental MSCs and improve their differentiation potential. Augmentation of antibacterial efficiency of dental MSCs could broaden their clinical application in dentistry.


2022 ◽  
Vol 23 (2) ◽  
pp. 883
Author(s):  
Annalisa Chianese ◽  
Carla Zannella ◽  
Alessandra Monti ◽  
Anna De Filippis ◽  
Nunzianna Doti ◽  
...  

Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
John H. White

Vitamin D deficiency, characterized by low circulating levels of calcifediol (25-hydroxyvitamin D, 25D) has been linked to increased risk of infections of bacterial and viral origin. Innate immune cells produce hormonal calcitriol (1,25-dihydroxyvitamin D, 1,25D) locally from circulating calcifediol in response to pathogen threat and an immune-specific cytokine network. Calcitriol regulates gene expression through its binding to the vitamin D receptor (VDR), a ligand-regulated transcription factor. The hormone-bound VDR induces the transcription of genes integral to innate immunity including pattern recognition receptors, cytokines, and most importantly antimicrobial peptides (AMPs). Transcription of the human AMP genes β-defensin 2/defensin-β4 (HBD2/DEFB4) and cathelicidin antimicrobial peptide (CAMP) is stimulated by the VDR bound to promoter-proximal vitamin D response elements. HDB2/DEFB4 and the active form of CAMP, the peptide LL-37, which form amphipathic secondary structures, were initially characterized for their antibacterial actively. Notably, calcitriol signaling induces secretion of antibacterial activity in vitro and in vivo, and low circulating levels of calcifediol are associated with diverse indications characterized by impaired antibacterial immunity such as dental caries and urinary tract infections. However, recent work has also provided evidence that the same AMPs are components of 1,25D-induced antiviral responses, including those against the etiological agent of the COVID-19 pandemic, the SARS-CoV2 coronavirus. This review surveys the evidence for 1,25D-induced antimicrobial activity in vitro and in vivo in humans and presents our current understanding of the potential mechanisms by which CAMP and HBD2/DEFB4 contribute to antiviral immunity.


Author(s):  
Laura Bedin Denardi ◽  
Carla Weiblen ◽  
Lara Baccarin Ianiski ◽  
Paula Cristina Stibbe ◽  
Stefania Campos Pinto ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Ranwa A. Elrayess ◽  
Mahmoud E. Mohallal ◽  
Yomn M. Mobarak ◽  
Hala M. Ebaid ◽  
Sarah Haywood-Small ◽  
...  

Within the last decade, several peptides have been identified according to their ability to inhibit the growth of microbial pathogens. These antimicrobial peptides (AMPs) are a part of the innate immune system of all living organisms. Many studies on their effects on prokaryotic microorganisms have been reported; some of these peptides have cytotoxic properties although the molecular mechanisms underlying their activity on eukaryotic cells remain poorly understood. Smp24 and Smp43 are novel cationic AMPs which were identified from the venom of the Egyptian scorpion Scorpio maurus palmatus. Smp24 and Smp43 showed potent activity against both Gram-positive and Gram-negative bacteria as well as fungi. Here we describe cytotoxicity of these peptides towards two acute leukaemia cell lines (myeloid (KG1-a) and lymphoid (CCRF-CEM) leukaemia cell lines) and three non-tumour cell lines CD34+ (hematopoietic stem progenitor from cord blood), HRECs (human renal epithelial cells) and HaCaT (human skin keratinocytes). Smp24 and Smp43 (4–256 µg/ml) decreased the viability of all cell lines, although HaCaT cells were markedly less sensitive. With the exception HaCaT cells, the caspase-1 gene was uniquely up-regulated in all cell lines studied. However, all cell lines showed an increase in downstream interleukin-1β (IL-1β) expression. Transmission electron microscope studies revealed the formation of cell membrane blebs and the appearance of autolysosomes and lipid droplets in all cell lines; KG1-a leukemia cells also showed the unique appearance of glycogen deposits. Our results reveal a novel mechanism of action for scorpion venom AMPs, activating a cascade of events leading to cell death through a programmed pyroptotic mechanism.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Albert Bolatchiev

The antimicrobial peptides human Beta-defensin-3 (hBD-3) and Epinecidin-1 (Epi-1; by Epinephelus coioides) could be a promising tool to develop novel antibacterials to combat antibiotic resistance. The antibacterial activity of Epi-1 + vancomycin against methicillin-resistant Staphylococcus aureus (22 isolates) and Epi-1 + hBD-3 against carbapenem-resistant isolates of Klebsiella pneumoniae (n = 23), Klebsiella aerogenes (n = 17), Acinetobacter baumannii (n = 9), and Pseudomonas aeruginosa (n = 13) was studied in vitro. To evaluate the in vivo efficacy of hBD-3 and Epi-1, ICR (CD-1) mice were injected intraperitoneally with a lethal dose of K. pneumoniae or P. aeruginosa. The animals received a single injection of either sterile saline, hBD-3 monotherapy, meropenem monotherapy, hBD-3 + meropenem, or hBD-3 + Epi-1. Studied peptides showed antibacterial activity in vitro against all studied clinical isolates in a concentration of 2 to 32 mg/L. In both experimental models of murine sepsis, an increase in survival rate was seen with hBD-3 monotherapy, hBD-3 + meropenem, and hBD-3 + Epi-1. For K. pneumoniae-sepsis, hBD-3 was shown to be a promising option in overcoming the resistance of Klebsiella spp. to carbapenems, though more research is needed. In the P. aeruginosa-sepsis model, the addition of Epi-1 to hBD-3 was found to have a slightly reduced mortality rate compared to hBD-3 monotherapy.


2022 ◽  
Author(s):  
Robert Bücker ◽  
Carolin Seuring ◽  
Cornelia Cazey ◽  
Katharina Veith ◽  
Maria García-Alai ◽  
...  

The amyloid-antimicrobial link hypothesis is based on antimicrobial properties found in human amyloids involved in neurodegenerative and systemic diseases, along with amyloidal structural properties found in antimicrobial peptides (AMPs) across kingdoms of life. Supporting this hypothesis, we here determined the fibril structure of two AMPs from amphibians, uperin 3.5 and aurein 3.3, by cryogenic electron microscopy (cryo-EM), revealing amyloid cross-β fibrils of mated β-sheets at atomic resolution. Uperin 3.5 displayed substantial polymorphism with a protofilament of two mated β-sheets. The determined structure was a polymorph showing a 3-blade symmetrical propeller of nine peptides per fibril layer including tight β-sheet interfaces. This cross-β cryo-EM structure complements the cross-α fibril conformation previously determined by a crystal structure, substantiating a secondary structure switch mechanism of uperin 3.5. The aurein 3.3 arrangement consisted of six peptides per fibril layer, all showing kinked β-sheets allowing a rounded compactness of the fibril. The kinked β-sheets are similar to LARKS (Low-complexity, Amyloid-like, Reversible, Kinked segments) found in human functional amyloids. The amyloidal properties of antimicrobial peptides shed light on a mechanism of regulation of animicrobial activity involving self-assembly and fibril morphological variations. Moreover, the known endurance of amyloid structures can provide a template for the design of sturdy antimicrobials.


Export Citation Format

Share Document