Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

medical images
Recently Published Documents


TOTAL DOCUMENTS

4690
(FIVE YEARS 879)

H-INDEX

66
(FIVE YEARS 7)

2023 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Nilesh Bahadure ◽  
SIDHESWAR ROUTRAY ◽  
S. Rajasoundaran ◽  
A.V. Prabu ◽  
V. Pandimurugan ◽  
...  

2022 ◽  
Vol 74 ◽  
pp. 103490
Author(s):  
Shuang Qiao ◽  
Qinghan Yu ◽  
Zhengwei Zhao ◽  
Liying Song ◽  
Hui Tao ◽  
...  

10.29007/r6cd ◽  
2022 ◽  
Author(s):  
Hoang Nhut Huynh ◽  
My Duyen Nguyen ◽  
Thai Hong Truong ◽  
Quoc Tuan Nguyen Diep ◽  
Anh Tu Tran ◽  
...  

Segmentation is one of the most common methods for analyzing and processing medical images, assisting doctors in making accurate diagnoses by providing detailed information about the required body part. However, segmenting medical images presents a number of challenges, including the need for medical professionals to be trained, the fact that it is time-consuming and prone to errors. As a result, it appears that an automated medical image segmentation system is required. Deep learning algorithms have recently demonstrated superior performance for segmentation tasks, particularly semantic segmentation networks that provide a pixel-level understanding of images. U- Net for image segmentation is one of the modern complex networks in the field of medical imaging; several segmentation networks have been built on its foundation with the advancements of Recurrent Residual convolutional units and the construction of recurrent residual convolutional neural network based on U-Net (R2U-Net). R2U-Net is used to perform trachea and bronchial segmentation on a dataset of 36,000 images. With a variety of experiments, the proposed segmentation resulted in a dice-coefficient of 0.8394 on the test dataset. Finally, a number of research issues are raised, indicating the need for future improvements.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Panjiang Ma ◽  
Qiang Li ◽  
Jianbin Li

During the last two decades, as computer technology has matured and business scenarios have diversified, the scale of application of computer systems in various industries has continued to expand, resulting in a huge increase in industry data. As for the medical industry, huge unstructured data has been accumulated, so exploring how to use medical image data more effectively to efficiently complete diagnosis has an important practical impact. For a long time, China has been striving to promote the process of medical informatization, and the combination of big data and artificial intelligence and other advanced technologies in the medical field has become a hot industry and a new development trend. This paper focuses on cardiovascular diseases and uses relevant deep learning methods to realize automatic analysis and diagnosis of medical images and verify the feasibility of AI-assisted medical treatment. We have tried to achieve a complete diagnosis of cardiovascular medical imaging and localize the vulnerable lesion area. (1) We tested the classical object based on a convolutional neural network and experiment, explored the region segmentation algorithm, and showed its application scenarios in the field of medical imaging. (2) According to the data and task characteristics, we built a network model containing classification nodes and regression nodes. After the multitask joint drill, the effect of diagnosis and detection was also enhanced. In this paper, a weighted loss function mechanism is used to improve the imbalance of data between classes in medical image analysis, and the effect of the model is enhanced. (3) In the actual medical process, many medical images have the label information of high-level categories but lack the label information of low-level lesions. The proposed system exposes the possibility of lesion localization under weakly supervised conditions by taking cardiovascular imaging data to resolve these issues. Experimental results have verified that the proposed deep learning-enabled model has the capacity to resolve the aforementioned issues with minimum possible changes in the underlined infrastructure.


Author(s):  
Haibo Zhang ◽  
Wenping Guo ◽  
Shiqing Zhang ◽  
Hongsheng Lu ◽  
Xiaoming Zhao

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 135
Author(s):  
Gelan Ayana ◽  
Jinhyung Park ◽  
Jin-Woo Jeong ◽  
Se-woon Choe

Breast cancer diagnosis is one of the many areas that has taken advantage of artificial intelligence to achieve better performance, despite the fact that the availability of a large medical image dataset remains a challenge. Transfer learning (TL) is a phenomenon that enables deep learning algorithms to overcome the issue of shortage of training data in constructing an efficient model by transferring knowledge from a given source task to a target task. However, in most cases, ImageNet (natural images) pre-trained models that do not include medical images, are utilized for transfer learning to medical images. Considering the utilization of microscopic cancer cell line images that can be acquired in large amount, we argue that learning from both natural and medical datasets improves performance in ultrasound breast cancer image classification. The proposed multistage transfer learning (MSTL) algorithm was implemented using three pre-trained models: EfficientNetB2, InceptionV3, and ResNet50 with three optimizers: Adam, Adagrad, and stochastic gradient de-scent (SGD). Dataset sizes of 20,400 cancer cell images, 200 ultrasound images from Mendeley and 400 ultrasound images from the MT-Small-Dataset were used. ResNet50-Adagrad-based MSTL achieved a test accuracy of 99 ± 0.612% on the Mendeley dataset and 98.7 ± 1.1% on the MT-Small-Dataset, averaging over 5-fold cross validation. A p-value of 0.01191 was achieved when comparing MSTL against ImageNet based TL for the Mendeley dataset. The result is a significant improvement in the performance of artificial intelligence methods for ultrasound breast cancer classification compared to state-of-the-art methods and could remarkably improve the early diagnosis of breast cancer in young women.


Tomography ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 59-76
Author(s):  
Bing Li ◽  
Shaoyong Wu ◽  
Siqin Zhang ◽  
Xia Liu ◽  
Guangqing Li

Automatic image segmentation plays an important role in the fields of medical image processing so that these fields constantly put forward higher requirements for the accuracy and speed of segmentation. In order to improve the speed and performance of the segmentation algorithm of medical images, we propose a medical image segmentation algorithm based on simple non-iterative clustering (SNIC). Firstly, obtain the feature map of the image by extracting the texture information of it with feature extraction algorithm; Secondly, reduce the image to a quarter of the original image size by downscaling; Then, the SNIC super-pixel algorithm with texture information and adaptive parameters which used to segment the downscaling image to obtain the superpixel mark map; Finally, restore the superpixel labeled image to the original size through the idea of the nearest neighbor algorithm. Experimental results show that the algorithm uses an improved superpixel segmentation method on downscaling images, which can increase the segmentation speed when segmenting medical images, while ensuring excellent segmentation accuracy.


Author(s):  
Lie Ju ◽  
Xin Wang ◽  
Lin Wang ◽  
Dwarikanath Mahapatra ◽  
Xin Zhao ◽  
...  

2022 ◽  
Vol 130 (3) ◽  
pp. 1309-1324
Author(s):  
Rizwan Taj ◽  
Feng Tao ◽  
Shahzada Khurram ◽  
Ateeq Ur Rehman ◽  
Syed Kamran Haider ◽  
...  

Export Citation Format

Share Document