Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

sheffer sequences
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 2)

2022 ◽  
Vol 40 ◽  
pp. 1-15
Author(s):  
Subuhi Khan ◽  
Tabinda Nahid

The intended objective of this paper is to introduce a new class of the hybrid q-Sheffer polynomials by means of the generating function and series definition. The determinant definition and other striking properties of these polynomials are established. Certain results for the continuous q-Hermite-Appell polynomials are obtained. The graphical depictions are performed for certain members of the hybrid q-Sheffer family. The zeros of these members are also explored using numerical simulations. Finally, the orthogonality condition for the hybrid q-Sheffer polynomials is established.


2021 ◽  
Vol 359 (2) ◽  
pp. 205-217
Author(s):  
Sergio A. Carrillo ◽  
Miguel Hurtado
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 176
Author(s):  
Hye Kyung Kim

Recently, Kim-Kim (J. Math. Anal. Appl. (2021), Vol. 493(1), 124521) introduced the λ-Sheffer sequence and the degenerate Sheffer sequence. In addition, Kim et al. (arXiv:2011.08535v1 17 November 2020) studied the degenerate derangement polynomials and numbers, and investigated some properties of those polynomials without using degenerate umbral calculus. In this paper, the y the degenerate derangement polynomials of order s (s∈N) and give a combinatorial meaning about higher order derangement numbers. In addition, the author gives some interesting identities related to the degenerate derangement polynomials of order s and special polynomials and numbers by using degenerate Sheffer sequences, and at the same time derive the inversion formulas of these identities.


2021 ◽  
Vol 493 (1) ◽  
pp. 124521 ◽  
Author(s):  
Dae San Kim ◽  
Taekyun Kim
Keyword(s):  

2021 ◽  
Vol 7 (3) ◽  
pp. 3845-3865
Author(s):  
Hye Kyung Kim ◽  
◽  
Dmitry V. Dolgy ◽  

<abstract><p>Many mathematicians have studied degenerate versions of some special polynomials and numbers that can take into account the surrounding environment or a person's psychological burden in recent years, and they've discovered some interesting results. Furthermore, one of the most important approaches for finding the combinatorial identities for the degenerate version of special numbers and polynomials is the umbral calculus. The Catalan numbers and the Daehee numbers play important role in connecting relationship between special numbers.</p> <p>In this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and aim to study the relation between well-known special polynomials and degenerate Catalan-Daehee polynomials of order $ r $ as one of the generalizations of the degenerate Catalan-Daehee polynomials by using the degenerate Sheffer sequences. Some of them include the degenerate and other special polynomials and numbers such as the degenerate falling factorials, the degenerate Bernoulli polynomials and numbers of order $ r $, the degenerate Euler polynomials and numbers of order $ r $, the degenerate Daehee polynomials of order $ r $, the degenerate Bell polynomials, and so on.</p></abstract>


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hye Kyung Kim

AbstractUmbral calculus is one of the important methods for obtaining the symmetric identities for the degenerate version of special numbers and polynomials. Recently, Kim–Kim (J. Math. Anal. Appl. 493(1):124521, 2021) introduced the λ-Sheffer sequence and the degenerate Sheffer sequence. They defined the λ-linear functionals and λ-differential operators, respectively, instead of the linear functionals and the differential operators of umbral calculus established by Rota. In this paper, the author gives various interesting identities related to the degenerate Lah–Bell polynomials and special polynomials and numbers by using degenerate Sheffer sequences, and at the same time derives the inversion formulas of these identities.


Author(s):  
Ghazala Yasmin ◽  
Abdulghani Muhyi

In this article, the Legendre-Gould Hopper polynomials are combined with Sheffer sequences to introduce certain mixed type special polynomials. Generating functions, differential equations and certain other properties of Legendre-Gould Hopper based Sheffer polynomials are derived. Further, operational and integral representations providing connections between these polynomials and known special polynomials are established. Certain identities and results for some members of these new mixed polynomials are also obtained. Finally, the determinantal definitions of Legendre-Gould Hopper based Sheffer polynomials are also given.


2020 ◽  
Vol 31 (12) ◽  
pp. 955-965
Author(s):  
Weiping Wang ◽  
Ke Zhang
Keyword(s):  

2020 ◽  
Vol 369 ◽  
pp. 124683 ◽  
Author(s):  
H.M. Srivastava ◽  
Mumtaz Riyasat ◽  
Subuhi Khan ◽  
Serkan Araci ◽  
Mehmet Acikgoz

Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1105
Author(s):  
Alansari ◽  
Riyasat ◽  
Khan ◽  
Kazmi

In this article, the integral transform is used to introduce a new family of extended hybrid Sheffer sequences via generating functions and operational rules. The determinant forms and other properties of these sequences are established using a matrix approach. The correspondingresults for the extended hybrid Appell sequences are also obtained. Certain examples in terms of the members of the extended hybrid Sheffer and Appell sequences are framed. By employing operational rules, the identities involving the Lah, Stirling and Pascal matrices are derived for the aforementioned sequences.


Export Citation Format

Share Document