Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

human telomerase
Recently Published Documents


TOTAL DOCUMENTS

1267
(FIVE YEARS 91)

H-INDEX

88
(FIVE YEARS 2)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 141
Author(s):  
Yanbing Wang ◽  
Yiwu Chen ◽  
Chang Li ◽  
Zhiwei Xiao ◽  
Hongming Yuan ◽  
...  

Human telomerase is a specialized DNA polymerase whose catalytic core includes both TERT and human telomerase RNA (hTR). Telomerase in humans, which is silent in most somatic cells, is activated to maintain the telomere length (TEL) in various types of cancer cells, including melanoma. In the vast majority of tumor cells, the TERT promoter is mutated to promote proliferation and inhibit apoptosis. Here, we exploited NG-ABEmax to revert TERT -146 T to -146 C in melanoma, and successfully obtained TERT promoter revertant mutant cells. These TERT revertant mutant cells exhibited significant growth inhibition both in vitro and in vivo. Moreover, A375−146C/C cells exhibited telomere shortening and the downregulation of TERT at both the transcription and protein levels, and migration and invasion were inhibited. In addition, TERT promoter revertant mutation abrogated the inhibitory effect of mutant TERT on apoptosis via B-cell lymphoma 2 (Blc-2), ultimately leading to cell death. Collectively, the results of our work demonstrate that reverting mutations in the TERT promoter is a potential therapeutic option for melanoma.


Author(s):  
Viktoriia Shliapina ◽  
Mariia Koriagina ◽  
Daria Vasilkova ◽  
Vadim Govorun ◽  
Olga Dontsova ◽  
...  

Cell proliferation is associated with increased energy and nutrients consumption. Metabolism switch from oxidative phosphorylation to glycolysis and telomerase activity are induced during stimulation of proliferation, such as tumorigenesis, immune cell activation, and stem cell differentiation, among others. Telomerase RNA is one of the core components of the telomerase complex and participates in survival mechanisms that are activated under stress conditions. Human telomerase RNA protein (hTERP) is encoded by telomerase RNA and has been recently shown to be involved in autophagy regulation. In this study, we demonstrated the role of hTERP in the modulation of signaling pathways regulating autophagy, protein biosynthesis, and cell proliferation. The AMPK signaling pathway was affected in cells deficient of hTERP and when hTERP was overexpressed. The appearance of hTERP is important for metabolism switching associated with the accelerated proliferation of cells in healthy and pathological processes. These findings demonstrate the connection between telomerase RNA biogenesis and function and signaling pathways.


Cell Research ◽  
2021 ◽  
Author(s):  
Futang Wan ◽  
Yongbo Ding ◽  
Yuebin Zhang ◽  
Zhenfang Wu ◽  
Shaobai Li ◽  
...  

AbstractTelomerase, a multi-subunit ribonucleoprotein complex, is a unique reverse transcriptase that catalyzes the processive addition of a repeat sequence to extend the telomere end using a short fragment of its own RNA component as the template. Despite recent structural characterizations of human and Tetrahymena telomerase, it is still a mystery how telomerase repeatedly uses its RNA template to synthesize telomeric DNA. Here, we report the cryo-EM structure of human telomerase holoenzyme bound with telomeric DNA at resolutions of 3.5 Å and 3.9 Å for the catalytic core and biogenesis module, respectively. The structure reveals that a leucine residue Leu980 in telomerase reverse transcriptase (TERT) catalytic subunit functions as a zipper head to limit the length of the short primer–template duplex in the active center. Moreover, our structural and computational analyses suggest that TERT and telomerase RNA (hTR) are organized to harbor a preformed active site that can accommodate short primer–template duplex substrates for catalysis. Furthermore, our findings unveil a double-fingers architecture in TERT that ensures nucleotide addition processivity of human telomerase. We propose that the zipper head Leu980 is a structural determinant for the sequence-based pausing signal of DNA synthesis that coincides with the RNA element-based physical template boundary. Functional analyses unveil that the non-glycine zipper head plays an essential role in both telomerase repeat addition processivity and telomere length homeostasis. In addition, we also demonstrate that this zipper head mechanism is conserved in all eukaryotic telomerases. Together, our study provides an integrated model for telomerase-mediated telomere synthesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Alain Chebly ◽  
Martina Prochazkova-Carlotti ◽  
Yamina Idrissi ◽  
Laurence Bresson-Bepoldin ◽  
Sandrine Poglio ◽  
...  

Sézary syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphomas (CTCL) in which the human Telomerase Reverse Transcriptase (hTERT) gene is re-expressed. Current available treatments do not provide long-term response. We previously reported that Histone deacetylase inhibitors (HDACi, romidespin and vorinostat) and a DNA methyltransferase inhibitor (DNMTi, 5-azacytidine) can reduce hTERT expression without altering the methylation level of hTERT promoter. Romidepsin and vorinostat are approved for CTCL treatment, while 5-azacytidine is approved for the treatment of several hematological disorders, but not for CTCL. Here, using the soft agar assay, we analyzed the functional effect of the aforementioned epidrugs on the clonogenic capacities of Sézary cells. Our data revealed that, besides hTERT downregulation, epidrugs’ pressure reduced the proliferative and the tumor formation capacities in Sézary cells in vitro.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1632
Author(s):  
Beatriz Maria Dias Nogueira ◽  
Laudreísa da Costa Pantoja ◽  
Emerson Lucena da Silva ◽  
Fernando Augusto Rodrigues Mello Júnior ◽  
Eliel Barbosa Teixeira ◽  
...  

Acute Lymphoblastic Leukemia (ALL) is a neoplasm of the hematopoietic system defined as a clonal expansion of an abnormal lymphoid precursor cell. It mostly affects children under five years of age and is the most common tumor to afflict pediatric patients. The expression of the human telomerase gene (hTERT) in patients with ALL has been studied as a biomarker and could become a new therapeutic target. We evaluate the role of hTERT gene expression in ALL pediatric patients, through quantitative real-time PCR technique, and the possible correlation between hTERT expression and clinical variables: gender, age, white blood cells (WBC), gene fusions, and immunophenotyping. The analysis between healthy controls and ALL patients (N = 244) was statistically significant (p < 0.001), demonstrating hTERT overexpression in these patients. In comparison with the usual set of clinical variables, the data were not statistically significant (p > 0.05), indicating that hTERT is equally overexpressed among patients regardless of gender, age, gene fusions, and immunophenotyping. Moreover, patients who presented a higher hTERT expression level had a significant (p < 0.0001) lower overall survival rate. In summary, hTERT expression emerges as an important molecular pathway in leukemogenesis regardless patient’s clinical variables, thus, the data here presented pointed it as a valuable biomarker in pediatric acute lymphoblastic leukemia and a promising target for new therapeutic and prognostic measures.


Author(s):  
Thi Hoang Duong Nguyen

Telomerase ribonucleoprotein was discovered over three decades ago as a specialized reverse transcriptase that adds telomeric repeats to the ends of linear eukaryotic chromosomes. Telomerase plays key roles in maintaining genome stability; and its dysfunction and misregulation have been linked to different types of cancers and a spectrum of human genetic disorders. Over the years, a wealth of genetic and biochemical studies of human telomerase have illuminated its numerous fascinating features. Yet, structural studies of human telomerase have lagged behind due to various challenges. Recent technical developments in cryo-electron microscopy have allowed for the first detailed visualization of the human telomerase holoenzyme, revealing unprecedented insights into its active site and assembly. This review summarizes the cumulative work leading to the recent structural advances, as well as highlights how the future structural work will further advance our understanding of this enzyme.


Export Citation Format

Share Document