An Urban Road network is often used for multipurpose trips, due to their transportation functions, such as attractiveness and orientation, as well as social, ecological, and economic features. In Indonesia, road incidents have reportedly increased during the last decade because of a higher frequency of natural hazards, accidents, and on-street mass demonstrations. These incidents are found to degrade or terminate road access, forcing users to utilize alternative routes and decreasing the service performance in adjacent directions. Due to the unexpected occurrences at any location and time, there is a need to investigate the impact of random incidents on road performances. Several accessibility indexes have also been used to evaluate the vulnerability of road networks. However, this is less practical in Indonesia, with the road authority using functional performances as the indicator. This indicates the need for an index to be developed based on road performance parameters. Therefore, this study aims to develop a road performance-based vulnerability index known as the RCI (Road Criticality Index). Combined with a traffic simulation tool, this system is used as an alternative index to assess vulnerabilities, by identifying the road(s) providing worse consequences due to unforeseen incidents. This simulation was conducted by using the PTV Visum, assuming a road section is closed due to the worst incident scenarios. The result showed that the RCI offered a more comprehensive assessment than the existing indicator (volume capacity ratio). The RCI included travel speed and mobility components for evaluating both local and global road performances. With the knowledge of the most vulnerable locations and their consequences, road authorities can prioritize maintenance and development strategies based on the criticality index. Also, preventive measures should be conducted to mitigate risk under a constrained budget. This methodology can be applied to sustainably enhance the resilience of urban road networks.