Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

molecule production
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 9)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Roberto G. Stella ◽  
Christoph G.W. Gertzen ◽  
Sander H.J. Smits ◽  
Cornelia Gätgens ◽  
Tino Polen ◽  
...  

2021 ◽  
Vol 118 (36) ◽  
pp. e2106818118
Author(s):  
Emily K. Bowman ◽  
James M. Wagner ◽  
Shuo-Fu Yuan ◽  
Matthew Deaner ◽  
Claire M. Palmer ◽  
...  

Sorting large libraries of cells for improved small molecule secretion is throughput limited. Here, we combine producer/secretor cell libraries with whole-cell biosensors using a microfluidic-based screening workflow. This approach enables a mix-and-match capability using off-the-shelf biosensors through either coencapsulation or pico-injection. We demonstrate the cell type and library agnostic nature of this workflow by utilizing single-guide RNA, transposon, and ethyl-methyl sulfonate mutagenesis libraries across three distinct microbes (Escherichia coli, Saccharomyces cerevisiae, and Yarrowia lipolytica), biosensors from two organisms (E. coli and S. cerevisiae), and three products (triacetic acid lactone, naringenin, and L-DOPA) to identify targets improving production/secretion.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1686
Author(s):  
Daniela Castiglia ◽  
Simone Landi ◽  
Sergio Esposito

Algal species still show unrevealed and unexplored potentiality for the identification of new compounds. Photosynthetic organisms represent a valuable resource to exploit and sustain the urgent need of sustainable and green technologies. Particularly, unconventional organisms from extreme environments could hide properties to be employed in a wide range of biotechnology applications, due to their peculiar alleles, proteins, and molecules. In this review we report a detailed dissection about the latest and advanced applications of protein derived from algae. Furthermore, the innovative use of modified algae as bio-reactors to generate proteins or bioactive compounds was discussed. The latest progress about pharmaceutical applications, including the possibility to obtain drugs to counteract virus (as SARS-CoV-2) were also examined. The last paragraph will survey recent cases of the utilization of extremophiles as bio-factories for specific protein and molecule production.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 661
Author(s):  
Saúl A. Villafañe-Barajas ◽  
Marta Ruiz-Bermejo ◽  
Pedro Rayo-Pizarroso ◽  
Santos Gálvez-Martínez ◽  
Eva Mateo-Martí ◽  
...  

Hydrogen cyanide, HCN, is considered a fundamental molecule in chemical evolution. The named HCN polymers have been suggested as precursors of important bioorganics. Some novel researches have focused on the role of mineral surfaces in the hydrolysis and/or polymerization of cyanide species, but until now, their role has been unclear. Understanding the role of minerals in chemical evolution processes is crucial because minerals undoubtedly interacted with the organic molecules formed on the early Earth by different process. Therefore, we simulated the probable interactions between HCN and a serpentinite-hosted alkaline hydrothermal system. We studied the effect of serpentinite during the thermolysis of HCN at basic conditions (i.e., HCN 0.15 M, 50 h, 100 °C, pH > 10). The HCN-derived thermal polymer and supernatant formed after treatment were analyzed by several complementary analytical techniques. The results obtained suggest that: I) the mineral surfaces can act as mediators in the mechanisms of organic molecule production such as the polymerization of HCN; II) the thermal and physicochemical properties of the HCN polymer produced are affected by the presence of the mineral surface; and III) serpentinite seems to inhibit the formation of bioorganic molecules compared with the control (without mineral).


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 265
Author(s):  
Sergio Gutiérrez ◽  
Kyle J. Lauersen

Microalgae and cyanobacteria are photosynthetic microbes that can be grown with the simple inputs of water, carbon dioxide, (sun)light, and trace elements. Their engineering holds the promise of tailored bio-molecule production using sustainable, environmentally friendly waste carbon inputs. Although algal engineering examples are beginning to show maturity, severe limitations remain in the transformation of multigene expression cassettes into model species and DNA delivery into non-model hosts. This review highlights common and emerging DNA delivery methods used for other organisms that may find future applications in algal engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaolei Wang ◽  
Yanbin Gao ◽  
Wenming Yi ◽  
Yu Qiao ◽  
Hao Hu ◽  
...  

Objective. Microinflammation plays a crucial role in podocyte dysfunction in diabetic nephropathy, but its regulatory mechanism is still unclear. This study is aimed at discussing the mechanisms underlying the effect of miRNA-155 on podocyte injury to determine its potential as a therapeutic target. Methods. Cultured immortalized mouse podocytes and diabetic KK-Ay mice models were treated with a miR-155 inhibitor. Western blotting, real-time PCR, ELISA, immunofluorescence, and Luciferase reporter assay were used to analyze markers of inflammation cytokines and podocyte injury. Results. miRNA-155 was found to be highly expressed in serum and kidney tissue of mice with diabetic nephropathy and in cultured podocytes, accompanied by elevated levels of inflammatory factors. Inhibition of miRNA-155 can reduce proteinuria and ACR levels, diminish the secretion of inflammatory molecules, improve kidney function, inhibit podocyte foot fusion, and reverse renal pathological changes in diabetic nephropathy mice. Overexpression of miRNA-155 in vitro can increase inflammatory molecule production in podocytes and aggravates podocyte injury, while miRNA-155 inhibition suppresses inflammatory molecule production in podocytes and reduces podocyte injury. A luciferase assay confirmed that miRNA-155 could selectively bind to 3 ′ -UTR of SIRT1, resulting in decreased SIRT1 expression. In addition, SIRT1 siRNA could offset SIRT1 upregulation and enhance inflammatory factor secretion in podocytes, induced by the miRNA-155 inhibitor. Conclusions. These findings strongly support the hypothesis that miRNA-155 inhibits podocyte inflammation and reduces podocyte injury through SIRT1 silencing. miRNA-155 suppression therapy may be useful for the management of diabetic nephropathy.


Author(s):  
Ladan Khaloopour ◽  
Mahtab Mirmohseni ◽  
Masoumeh Nasiri-Kenari

Export Citation Format

Share Document