Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

metaheuristic techniques
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 76)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Chnoor M. Rahman ◽  
Tarik A. Rashid ◽  
Abeer Alsadoon ◽  
Nebojsa Bacanin ◽  
Polla Fattah ◽  
...  

<p></p><p></p><p>The dragonfly algorithm developed in 2016. It is one of the algorithms used by the researchers to optimize an extensive series of uses and applications in various areas. At times, it offers superior performance compared to the most well-known optimization techniques. However, this algorithm faces several difficulties when it is utilized to enhance complex optimization problems. This work addressed the robustness of the method to solve real-world optimization issues, and its deficiency to improve complex optimization problems. This review paper shows a comprehensive investigation of the dragonfly algorithm in the engineering area. First, an overview of the algorithm is discussed. Besides, we also examined the modifications of the algorithm. The merged forms of this algorithm with different techniques and the modifications that have been done to make the algorithm perform better are addressed. Additionally, a survey on applications in the engineering area that used the dragonfly algorithm is offered. The utilized engineering applications are the applications in the field of mechanical engineering problems, electrical engineering problems, optimal parameters, economic load dispatch, and loss reduction. The algorithm is tested and evaluated against particle swarm optimization algorithm and firefly algorithm. To evaluate the ability of the dragonfly algorithm and other participated algorithms a set of traditional benchmarks (TF1-TF23) were utilized. Moreover, to examine the ability of the algorithm to optimize large scale optimization problems CEC-C2019 benchmarks were utilized. A comparison is made between the algorithm and other metaheuristic techniques to show its ability to enhance various problems. The outcomes of the algorithm from the works that utilized the dragonfly algorithm previously and the outcomes of the benchmark test functions proved that in comparison with participated algorithms (GWO, PSO, and GA), the dragonfly algorithm owns an excellent performance, especially for small to intermediate applications. Moreover, the congestion facts of the technique and some future works are presented. The authors conducted this research to help other researchers who want to study the algorithm and utilize it to optimize engineering problems.</p><p></p><p></p>


2022 ◽  
pp. 1043-1058
Author(s):  
Rashmi Rekha Sahoo ◽  
Mitrabinda Ray

The primary objective of software testing is to locate bugs as many as possible in software by using an optimum set of test cases. Optimum set of test cases are obtained by selection procedure which can be viewed as an optimization problem. So metaheuristic optimizing (searching) techniques have been immensely used to automate software testing task. The application of metaheuristic searching techniques in software testing is termed as Search Based Testing. Non-redundant, reliable and optimized test cases can be generated by the search based testing with less effort and time. This article presents a systematic review on several meta heuristic techniques like Genetic Algorithms, Particle Swarm optimization, Ant Colony Optimization, Bee Colony optimization, Cuckoo Searches, Tabu Searches and some modified version of these algorithms used for test case generation. The authors also provide one framework, showing the advantages, limitations and future scope or gap of these research works which will help in further research on these works.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

In general multiple paths are covered by multiple runs which is a time consuming task. Now a days, metaheuristic techniques are widely used for path coverage. In order to reduce the time, an efficient method is proposed based on Forest Optimization Algorithm (FOA) with Metamorphic Relations (MRs) that cover multiple paths at a time in one run unlike the traditional search based testing. In the proposed approach, initial test case is generated using FOA, the successive test cases are generated using MRs without undergoing several runs. The motive of using FOA is that the searching mechanism of this algorithm having resemblance with the branch / path coverage techniques of testing. To the best of our knowledge, FOA has not been implemented in software testing. The experimental results are compared with three existing work. The efficiency of simply FOA is also shown how it able to cover multiple paths. The results show that FOA with MRs is more efficient in terms of time consumption and number of paths covered.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1697
Author(s):  
Kamil Dworak ◽  
Urszula Boryczka

This article presents the author’s own metaheuristic cryptanalytic attack based on the use of differential cryptanalysis (DC) methods and memetic algorithms (MA) that improve the local search process through simulated annealing (SA). The suggested attack will be verified on a set of ciphertexts generated with the well-known DES (data encryption standard) reduced to six rounds. The aim of the attack is to guess the last encryption subkey, for each of the two characteristics Ω. Knowing the last subkey, it is possible to recreate the complete encryption key and thus decrypt the cryptogram. The suggested approach makes it possible to automatically reject solutions (keys) that represent the worst fitness function, owing to which we are able to significantly reduce the attack search space. The memetic algorithm (MASA) created in such a way will be compared with other metaheuristic techniques suggested in literature, in particular, with the genetic algorithm (NGA) and the classical differential cryptanalysis attack, in terms of consumption of memory and time needed to guess the key. The article also investigated the entropy of MASA and NGA attacks.


2021 ◽  
Vol 9 (3-4) ◽  
pp. 89-99
Author(s):  
Ivona Brajević ◽  
Miodrag Brzaković ◽  
Goran Jocić

Beetle antennae search (BAS) algorithm is a newly proposed single-solution based metaheuristic technique inspired by the beetle preying process. Although BAS algorithm has shown good search abilities, it can be easily trapped into local optimum when it is used to solve hard optimization problems. With the intention to overcome this drawback, this paper presents a population-based beetle antennae search (PBAS) algorithm for solving integer programming problems.  This method employs the population's capability to search diverse regions of the search space to provide better guarantee for finding the optimal solution. The PBAS method was tested on nine integer programming problems and one mechanical design problem. The proposed algorithm was compared to other state-of-the-art metaheuristic techniques. The comparisons show that the proposed PBAS algorithm produces better results for majority of tested problems.  


2021 ◽  
pp. 323-332
Author(s):  
Ashish Jain ◽  
Prakash C. Sharma ◽  
Nirmal K. Gupta ◽  
Santosh K. Vishwakarma

Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2633
Author(s):  
Md Ashikur Rahman ◽  
Rajalingam Sokkalingam ◽  
Mahmod Othman ◽  
Kallol Biswas ◽  
Lazim Abdullah ◽  
...  

Combinatorial optimization problems are often considered NP-hard problems in the field of decision science and the industrial revolution. As a successful transformation to tackle complex dimensional problems, metaheuristic algorithms have been implemented in a wide area of combinatorial optimization problems. Metaheuristic algorithms have been evolved and modified with respect to the problem nature since it was recommended for the first time. As there is a growing interest in incorporating necessary methods to develop metaheuristics, there is a need to rediscover the recent advancement of metaheuristics in combinatorial optimization. From the authors’ point of view, there is still a lack of comprehensive surveys on current research directions. Therefore, a substantial part of this paper is devoted to analyzing and discussing the modern age metaheuristic algorithms that gained popular use in mostly cited combinatorial optimization problems such as vehicle routing problems, traveling salesman problems, and supply chain network design problems. A survey of seven different metaheuristic algorithms (which are proposed after 2000) for combinatorial optimization problems is carried out in this study, apart from conventional metaheuristics like simulated annealing, particle swarm optimization, and tabu search. These metaheuristics have been filtered through some key factors like easy parameter handling, the scope of hybridization as well as performance efficiency. In this study, a concise description of the framework of the selected algorithm is included. Finally, a technical analysis of the recent trends of implementation is discussed, along with the impacts of algorithm modification on performance, constraint handling strategy, the handling of multi-objective situations using hybridization, and future research opportunities.


Export Citation Format

Share Document