Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

car following model
Recently Published Documents


TOTAL DOCUMENTS

653
(FIVE YEARS 135)

H-INDEX

51
(FIVE YEARS 3)

2022 ◽  
Vol 2 (1) ◽  
pp. 24-40
Author(s):  
Amirhosein Karbasi ◽  
Steve O’Hern

Road traffic crashes are a major safety problem, with one of the leading factors in crashes being human error. Automated and connected vehicles (CAVs) that are equipped with Advanced Driver Assistance Systems (ADAS) are expected to reduce human error. In this paper, the Simulation of Urban MObility (SUMO) traffic simulator is used to investigate how CAVs impact road safety. In order to define the longitudinal behavior of Human Drive Vehicles (HDVs) and CAVs, car-following models, including the Krauss, the Intelligent Driver Model (IDM), and Cooperative Adaptive Cruise Control (CACC) car-following models were used to simulate CAVs. Surrogate safety measures were utilized to analyze CAVs’ safety impact using time-to-collision. Two case studies were evaluated: a signalized grid network that included nine intersections, and a second network consisting of an unsignalized intersection. The results demonstrate that CAVs could potentially reduce the number of conflicts based on each of the car following model simulations and the two case studies. A secondary finding of the research identified additional safety benefits of vehicles equipped with collision avoidance control, through the reduction in rear-end conflicts observed for the CACC car-following model.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8322
Author(s):  
Ziwei Yi ◽  
Wenqi Lu ◽  
Xu Qu ◽  
Linheng Li ◽  
Peipei Mao ◽  
...  

Connected vehicle (CV) technologies are changing the form of traditional traffic models. In the CV driving environment, abundant and accurate information is available to vehicles, promoting the development of control strategies and models. Under these circumstances, this paper proposes a bidirectional vehicles information structure (BDVIS) by making use of the acceleration information of one preceding vehicle and one following vehicle to improve the car-following models. Then, we deduced the derived multiple vehicles information structure (DMVIS), including historical movement information of multiple vehicles, without the acceleration information. Next, the paper embeds the four kinds of basic car-following models into the framework to investigate the stability condition of two structures under the small perturbation of traffic flow and explored traffic response properties with different proportions of forward-looking or backward-looking terms. Under the open boundary condition, simulations on a single lane are conducted to validate the theoretical analysis. The results indicated that BDVIS and the DMVIS perform better than the original car-following model in improving the traffic flow stability, but that they have their own advantages for differently positioned vehicles in the platoon. Moreover, increasing the proportions of the preceding and following vehicles presents a benefit to stability, but if traffic is stable, an increase in any of the parameters would extend the influence time, which reveals that neither β1 or β2 is the biggest the best for the traffic.


2021 ◽  
Author(s):  
Peng Guang-Han ◽  
Jia Teti ◽  
Kuang Hua ◽  
Tan Hui-Li ◽  
Chen Tao

Abstract A novel car-following model is offered based on the cooperative information transmission delayed effect involving headway and velocity under V2X environment. The stability conditions and mKdV equation of the new model are obtained via the linear and nonlinear analysis. Through numerical simulation, the variation trend of headway and hysteresis phenomenon are researched. At the same time, we investigated the additional energy consumption of the vehicle during acceleration. In brief, theoretical analysis and simulation results confirm that the new car-following model based on the cooperative information transmission delayed effect can improve traffic stability and reduce additional energy consumption.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2879
Author(s):  
Hongxia Ge ◽  
Siteng Li ◽  
Chunyue Yan

With the continuous advancement of electronic technology, auto parts manufacturing institutions are gradually applying electronic throttles to automobiles for precise control. Based on the visual angle model (VAM), a car-following model considering the electronic throttle angle of the preceding vehicle is proposed. The stability conditions are obtained through linear stability analysis. By means of nonlinear analysis, the time-dependent Ginzburg–Landau (TDGL) equation is derived first, and then the modified Korteweg-de-Vries (mKdV) equation is derived. The relationship between the two is thus obtained. Finally, in the process of numerical simulations and exploration, it is shown how the visual angle and electronic throttle affect the stability of traffic flow. The simulation results in MATLAB software verify the validity of the model, indicating that the visual angle and electronic throttle can improve traffic stability.


Author(s):  
Xiaoxia Zhou ◽  
Yiyou Chen ◽  
Qingyuan Yang ◽  
Jianping Zhang

Author(s):  
Lizhen Lin ◽  
Hongxia Ge ◽  
Rongjun Cheng

Under the Vehicle-to-Vehicle (V2V) environment, connected vehicles (CVs) can share the traveling information with each other to keep the traffic flow stable. However, the open network cooperation environment makes CVs vulnerable to cyberattacks, which leads to changes in driving behavior. The existing theories divide cyberattacks into three types: bogus information, replay/delay and collusion cyberattacks. In addition, the mixed flow consisting of truck and car is a common form of road traffic. In order to clarify the potential impact of cyberattacks on mixed traffic flow, this paper proposes an extended car-following model considering cyberattacks under CVs environment. Subsequently, the stability of the model is analyzed theoretically, and the stability condition of the model is obtained. The numerical simulation is carried out and the result shows that the cyberattacks lead to different degrees of traffic behavior hazards such as queue time extension, congestion and even rear end collision. Among them, cooperative attack is the most serious.


Author(s):  
Qing Tang ◽  
Xianbiao Hu ◽  
Ruwen Qin

The rapid advancement of connected and autonomous vehicle (CAV) technologies, although possibly years away from wide application to the general public travel, are receiving attention from many state Departments of Transportation (DOT) in the niche area of using autonomous maintenance technology (AMT) to reduce fatalities of DOT workers in work zone locations. Although promising results are shown in testing and deployments in several states, current autonomous truck mounted attenuator (ATMA) system operators are not provided with much practical driving guidance on how to drive these new vehicle systems in a way that is safe to both the public and themselves. To this end, this manuscript aims to model and develop a set of rules and instructions for ATMA system operators, particularly when it comes to critical locations where essential decision making is needed. Specifically, three technical requirements are investigated: car-following distance, critical lane-changing gap distance, and intersection clearance time. Newell’s simplified car-following model, and the classic lane-changing behavior model are modified, with roll-ahead distance taken into account, to model the driving behaviors of the ATMA vehicles at those critical decision-making locations. Data are collected from real-world field testing to calibrate and validate the developed models. The modeling outputs suggest important thresholds for ATMA system operators to follow. For example, on a freeway with a speed limit of 70 mph and ATMA operating speed of 10 mph, car-following distance should be no less than 75 ft for the lead truck and 100 ft for the follower truck, the critical lane-changing gap distance is 912 ft, and a minimum intersection clearance is 15 s, which are all much higher than the requirements for a general vehicle.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032008
Author(s):  
Jie Ren

Abstract Based on reinforcement learning technology, this paper establishes a new driverless car following model. DQN algorithm and traffic simulator are mainly used to train the agent, and the following model is finally obtained. Under the precise and controllable experimental environment, the preset optimization targets can achieve the expected assumption and complete the following behavior. This study will contribute to the development of unmanned vehicles in the future.


Export Citation Format

Share Document