Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

mapk signaling pathways
Recently Published Documents


TOTAL DOCUMENTS

705
(FIVE YEARS 251)

H-INDEX

58
(FIVE YEARS 9)

2022 ◽  
Vol 176 ◽  
pp. 114262
Author(s):  
Ibrahim A.A. Mohamed ◽  
Nesma Shalby ◽  
Ali Mahmoud El-Badri ◽  
Maria Batool ◽  
Chunyun Wang ◽  
...  

Pharmacology ◽  
2022 ◽  
pp. 1-9
Author(s):  
Qian Wu ◽  
Shukun Gai ◽  
Huijie Zhang

<b><i>Background:</i></b> Asperulosidic acid (ASP) is a bioactive iridoid exerting broad pharmacological and medicinal properties. However, it is still unknown if ASP has therapeutical effects on gestational diabetes mellitus (GDM). This study aims to evaluate the effects of ASP on GDM as well as its underlying mechanism. <b><i>Methods:</i></b> A mouse model of GDM was established and orally administrated ASP (10, 20, and 40 mg/kg) on gestation day (GD) 0. The mice were sacrificed on GD 18. <b><i>Results:</i></b> Blood glucose and serum insulin were then determined. The inflammatory cytokines including IL-6 and TNF-α and oxidative stress biomarkers including MDA, SOD, GSH, and GPx were determined by using specific ELISAs. In addition, the expressions of NF-κB and MAPK signaling pathway-related proteins were determined by using Western blotting. Treatment with ASP decreased blood glucose in the mouse model of GDM. Besides, ASP also increased serum insulin and attenuated β-cell function. Treatment with ASP suppressed IL-6 and TNF-α and regulated oxidative stress-related biomarkers. Western blotting analysis showed that treatment with ASP suppressed phosphorylation of NF-κB p65, ERK1/2, and p38 in placental tissues. <b><i>Conclusion:</i></b> ASP alleviates placental oxidative stress and inflammatory responses in GDM by the inhibition of the NF-κB and MAPK signaling pathways.


2022 ◽  
Author(s):  
Weiguo Xu ◽  
Junyu Zheng ◽  
Xiao Wang ◽  
Bin Zhou ◽  
Huanqiu Chen ◽  
...  

Abstract Background: As a new kind of non-coding RNAs (ncRNAs), tRNA derivatives play an important role in gastric carcinoma (GC). Nevertheless, the underlying mechanism tRNA derivatives were involved in was rarely illustrated. Methods: We screened out the tRNA derivative, tRF-Val-CAC-016, based on the tsRNA sequencing and demonstrated the effect tRF-Val-CAC-016 exerted on GC proliferation in vitro and in vivo. We applied Dual-luciferase reporter assay, RIP assay, and bioinformatic analysis to discover the downstream target of tRF-Val-CAC-016. Then CACNA1d was selected, and the oncogenic characteristics were verified. Subsequently, we detected the possible regulation of the canonical MAPK signaling pathway to further explore the downstream mechanism of tRF-Val-CAC-016. Results: As a result, we found that tRF-Val-CAC-016 was low-expressed in GC, and upregulation of tRF-Val-CAC-016 could significantly suppress the proliferation of GC cell lines. Meanwhile, tRF-Val-CAC-016 regulated the canonical MAPK signaling pathway by targeting CACNA1d. Conclusions: tRF-Val-CAC-016 modulates the transduction of CACNA1d-mediated MAPK signaling pathways to suppress the proliferation of gastric carcinoma. This study discussed the function and mechanism of tRF-Val-CAC-016 in GC for the first time. The pioneering work has contributed to our present understanding of tRNA derivative, which might provide an alternative mean for the targeted therapy of GC.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 29
Author(s):  
Chunmei Liu ◽  
Kunmei Chi ◽  
Meng Yang ◽  
Na Guo

Staphylococcal enterotoxin A (SEA), the toxin protein secreted by Staphylococcus aureus, can cause staphylococcal food poisoning outbreaks and seriously threaten global public health. However, little is known about the pathogenesis of SEA in staphylococcal foodborne diseases. In this study, the effect of SEA on intestinal barrier injury and NLRP3 inflammasome activation was investigated by exposing BALB/c mice to SEA with increasing doses and a potential toxic mechanism was elucidated. Our findings suggested that SEA exposure provoked villi injury and suppressed the expression of ZO-1 and occludin proteins, thereby inducing intestinal barrier dysfunction and small intestinal injury in mice. Concurrently, SEA significantly up-regulated the expression of NLRP3 inflammasome-associated proteins and triggered the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathways in jejunum tissues. Notably, selective inhibitors of MAPKs and NF-κB p65 ameliorated the activation of NLRP3 inflammasome stimulated by SEA, which further indicated that SEA could activate NLRP3 inflammasome through NF-κB/MAPK pathways. In summary, SEA was first confirmed to induce intestinal barrier dysfunction and activate NLRP3 inflammasome via NF-κB/MAPK signaling pathways. These findings will contribute to a more comprehensive understanding of the pathogenesis of SEA and related drug-screening for the treatment and prevention of bacteriotoxin-caused foodborne diseases via targeting specific pathways.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 80
Author(s):  
Jia Sha ◽  
Jiajia Song ◽  
Yechuan Huang ◽  
Yuhong Zhang ◽  
Hongwei Wang ◽  
...  

This study investigated the inhibitory effect and mechanism of 12 LAB strains isolated from Chinese fermented foods on dipeptidyl peptidase-4 (DPP-4) using the Caco-2 cell model. The results showed that the inhibitory effect of cell-free extracts (CFEs) collected from each LAB strain on DPP-4 was higher than that of the cell-free excretory supernatants. The CFEs from Lactobacillus plantarum YE4 (YE4-CFE) exhibited the strongest DPP-4 inhibitory activity (24.33% inhibition). Furthermore, YE4-CFE altered the TNF and MAPK signaling pathways. Additionally, the YE4-CFE ultrafiltration fraction (<3 kDa) displayed a similar DPP-4 inhibitory activity to YE4-CFE. UHPLC-MS/MS identified 19 compounds with a relative proportion of more than 1% in the <3 kDa fraction, and adenine, acetylcholine, and L-phenylalanine were the top three substances in terms of proportion. Altogether, the inhibitory effect of YE4-CFE on DPP-4 was associated with the TNF and MAPK signaling pathways, and with the high proportion of adenine, acetylcholine, and L-phenylalanine.


Author(s):  
Xiaochen Li ◽  
Xiaopei Cao ◽  
Hanqiu Zhao ◽  
Mingzhou Guo ◽  
Xiaoyu Fang ◽  
...  

Hypoxia contributes to the progression and metastasis of lung adenocarcinoma (LUAD). However, the specific underlying molecular mechanisms have not been fully elucidated. Here we report that Notch4 is upregulated in lung tissue from lung cancer patients. Functionally, Hypoxia activates the expressions of Delta-like 4 and Notch4, resulting in the excessive proliferation and migration of LUAD cells as well as apoptotic resistance. Notch4 silencing reduced ERK, JNK, and P38 activation. Meanwhile, Notch4 overexpression enhanced ERK, JNK, and P38 activation in LUAD cells. Furthermore, Notch4 exerted pro-proliferation, anti-apoptosis and pro-migration effects on LUAD cells that were partly reversed by the inhibitors of ERK, JNK, and p38. The binding interaction between Notch4 and ERK/JNK/P38 were confirmed by the co-immunoprecipitation assay. In vivo study revealed that Notch4 played a key role in the growth and metastasis of LUAD using two xenograft models. This study demonstrates that hypoxia activates Notch4-ERK/JNK/P38 MAPK signaling pathways to promote LUAD cell progression and metastasis.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1356
Author(s):  
Ling Ge ◽  
Shuangxia Zou ◽  
Zehu Yuan ◽  
Weihao Chen ◽  
Shanhe Wang ◽  
...  

Escherichia coli (E. coli) F17 is a member of enterotoxigenic Escherichia coli, which can cause massive diarrhea and high mortality in newborn lambs. β-defensin is mainly produced by the epithelial tissue of the gastrointestinal tract in response to microbial infection. However, the molecular mechanism of sheep β-defensin 2 (SBD-2) against E. coli F17 remains unclear. This study aims to reveal the antibacterial ability of SBD-2 against E. coli F17 infection in sheep. Firstly, we established the culture system of ovine intestinal epithelial cells (OIECs) in vitro, treated with different concentrations of E. coli F17 for an indicated time. Secondly, we performed RNA interference and overexpression to investigate the effect of SBD-2 expression on E. coli F17 adhesion to OIECs. Finally, inhibitors of NF-κB and MAPK pathways were pre-treated to explore the possible relationship involving in E. coli F17 infection regulating SBD-2 expression. The results showed that E. coli F17 markedly (p < 0.01) upregulated the expression levels of SBD-2 mRNA and protein in a concentration- and time-dependent manner. Overexpression of SBD-2 contributed to enhancing E. coli F17 resistance in OIECs, while silencing SBD-2 dramatically improved the adhesion of E. coli F17 to OIECs (p < 0.05 or p < 0.01). Furthermore, E. coli F17 stimulated SBD-2 expression was obviously decreased by pre-treatment with NF-κB inhibitor PDTC, p38 MAPK inhibitor SB202190 and ERK1/2 MAPK inhibitor PD98095 (p < 0.05 or p < 0.01). Interestingly, adhesion of E. coli F17 to OIECs were highly enhanced by pre-treated with PDTC, SB202190 and PD98095. Our data suggested that SBD-2 could inhibit E. coli F17 infection in OIECs, possibly through NF-κB and MAPK signaling pathways. Our results provide useful theoretical basis on developing anti-infective drug and breeding for E. coli diarrhea disease-resistant sheep.


2021 ◽  
Vol 22 (24) ◽  
pp. 13477
Author(s):  
Zeneng Wang ◽  
Jennie Hazen ◽  
Xun Jia ◽  
Elin Org ◽  
Yongzhong Zhao ◽  
...  

L-alpha glycerylphosphorylcholine (GPC), a nutritional supplement, has been demonstrated to improve neurological function. However, a new study suggests that GPC supplementation increases incident stroke risk thus its potential adverse effects warrant further investigation. Here we show that GPC promotes atherosclerosis in hyperlipidemic Apoe−/− mice. GPC can be metabolized to trimethylamine N-oxide, a pro-atherogenic agent, suggesting a potential molecular mechanism underlying the observed atherosclerosis progression. GPC supplementation shifted the gut microbial community structure, characterized by increased abundance of Parabacteroides, Ruminococcus, and Bacteroides and decreased abundance of Akkermansia, Lactobacillus, and Roseburia, as determined by 16S rRNA gene sequencing. These data are consistent with a reduction in fecal and cecal short chain fatty acids in GPC-fed mice. Additionally, we found that GPC supplementation led to an increased relative abundance of choline trimethylamine lyase (cutC)-encoding bacteria via qPCR. Interrogation of host inflammatory signaling showed that GPC supplementation increased expression of the proinflammatory effectors CXCL13 and TIMP-1 and activated NF-κB and MAPK signaling pathways in human coronary artery endothelial cells. Finally, targeted and untargeted metabolomic analysis of murine plasma revealed additional metabolites associated with GPC supplementation and atherosclerosis. In summary, our results show GPC promotes atherosclerosis through multiple mechanisms and that caution should be applied when using GPC as a nutritional supplement.


Export Citation Format

Share Document