Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

nutrient uptake
Recently Published Documents


TOTAL DOCUMENTS

3834
(FIVE YEARS 949)

H-INDEX

86
(FIVE YEARS 11)

2022 ◽  
Vol 261 ◽  
pp. 107380
Author(s):  
Shicheng Yan ◽  
You Wu ◽  
Junliang Fan ◽  
Fucang Zhang ◽  
Jinjin Guo ◽  
...  

2022 ◽  
Vol 176 ◽  
pp. 114352
Author(s):  
S.P. Priyanka ◽  
S. Sujatha ◽  
G.R. Smitha ◽  
M.A. Suryanarayana ◽  
D. Kalaivanan

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 207
Author(s):  
Meijuan Wen ◽  
Sicun Yang ◽  
Lin Huo ◽  
Ping He ◽  
Xinpeng Xu ◽  
...  

Imbalanced and excessive fertilizer application has resulted in low yields and reduced nutrient use efficiency for melon production in China. Estimating nutrient requirements is crucial for effectively developing site-specific fertilizer recommendations for increasing yield and profit while reducing negative environmental impacts. Relationships between the yield and nutrient uptake requirements of above-ground dry matter were assessed using 1127 on-farm observations (2000–2020) from melon production regions of China. The quantitative evaluation of fertility of tropical soils (QUEFTS) model was used to estimate nutrient requirements. It predicted a linear increase in yield at balanced nutrient uptake levels until the yield reached approximately 60–80% of the potential yield. In order to produce 1000 kg of fruit, 2.9, 0.4 and 3.2 kg/ha of N, P and K (7.2:1.0:7.8), respectively, were required for above-ground parts, while the corresponding nutrient internal efficiencies were 345.3, 2612.6 and 310.0 kg per kg N, P and K, respectively, whereas 1.4, 0.2 and 1.9 kg of N, P and K were required to replace nutrients removed after harvest. The corresponding fruit absorption rates were 47.0%, 59.5% and 58.2%, respectively. Field validation experiments confirmed the consistency between observed and simulated uptake rates, indicating that this model could estimate nutrient requirements. These findings will help develop fertilizer recommendations for improving melon yield and nutrient use efficiency.


2022 ◽  
Vol 12 ◽  
Author(s):  
Riccardo F. Romersi ◽  
Sascha C. T. Nicklisch

An organism’s diet is a major route of exposure to both beneficial nutrients and toxic environmental chemicals and natural products. The uptake of dietary xenobiotics in the intestine is prevented by transporters of the Solute Carrier (SLC) and ATP Binding Cassette (ABC) family. Several environmental chemicals and natural toxins have been identified to induce expression of these defense transporters in fish and aquatic invertebrates, indicating that they are substrates and can be eliminated. However, certain environmental chemicals, termed Transporter-Interfering Chemicals or TICs, have recently been shown to bind to and inhibit fish and mammalian P-glycoprotein (ABCB1), thereby sensitizing cells to toxic chemical accumulation. If and to what extent other xenobiotic defense or nutrient uptake transporters can also be inhibited by dietary TICs is still unknown. To date, most chemical-transporter interaction studies in aquatic organisms have focused on ABC-type transporters, while molecular interactions of xenobiotics with SLC-type transporters are poorly understood. In this perspective, we summarize current advances in the identification, localization, and functional analysis of protective MXR transporters and nutrient uptake systems in the digestive system of fish and aquatic invertebrates. We collate the existing literature data on chemically induced transporter gene expression and summarize the molecular interactions of xenobiotics with these transport systems. Our review emphasizes the need for standardized assays in a broader panel of commercially important fish and seafood species to better evaluate the effects of TIC and other xenobiotic interactions with physiological substrates and MXR transporters across the aquatic ecosystem and predict possible transfer to humans through consumption.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 149
Author(s):  
Mohammed Bouskout ◽  
Mohammed Bourhia ◽  
Mohamed Najib Al Feddy ◽  
Hanane Dounas ◽  
Ahmad Mohammad Salamatullah ◽  
...  

Agricultural yields are under constant jeopardy as climate change and abiotic pressures spread worldwide. Using rhizospheric microbes as biostimulants/biofertilizers is one of the best ways to improve agro-agriculture in the face of these things. The purpose of this experiment was to investigate whether a native arbuscular mycorrhizal fungi inoculum (AMF-complex) might improve caper (Capparis spinosa) seedlings’ nutritional status, their morphological/growth performance and photosynthetic efficiency under water-deficit stress (WDS). Thus, caper plantlets inoculated with or without an AMF complex (+AMF and −AMF, respectively) were grown under three gradually increasing WDS regimes, i.e., 75, 50 and 25% of field capacity (FC). Overall, measurements of morphological traits, biomass production and nutrient uptake (particularly P, K+, Mg2+, Fe2+ and Zn2+) showed that mycorrhizal fungi inoculation increased these variables significantly, notably in moderate and severe WDS conditions. The increased WDS levels reduced the photochemical efficiency indices (Fv/Fm and Fv/Fo) in −AMF plants, while AMF-complex application significantly augmented these parameters. Furthermore, the photosynthetic pigments content was substantially higher in +AMF seedlings than −AMF controls at all the WDS levels. Favorably, at 25% FC, AMF-colonized plants produce approximately twice as many carotenoids as non-colonized ones. In conclusion, AMF inoculation seems to be a powerful eco-engineering strategy for improving the caper seedling growth rate and drought tolerance in harsh environments.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Xinhua Zhao ◽  
Qiqi Dong ◽  
Yi Han ◽  
Kezhao Zhang ◽  
Xiaolong Shi ◽  
...  

Abstract Background Intercropping, a diversified planting pattern, increases land use efficiency and farmland ecological diversity. We explored the changes in soil physicochemical properties, nutrient uptake and utilization, and microbial community composition in wide-strip intercropping of maize and peanut. Results The results from three treatments, sole maize, sole peanut and intercropping of maize and peanut, showed that intercropped maize had a marginal advantage and that the nutrient content of roots, stems and grains in side-row maize was better than that in the middle row of intercropped maize and sole maize. The yield of intercropped maize was higher than that of sole cropping. The interaction between crops significantly increased soil peroxidase activity, and significantly decreased protease and dehydrogenase activities in intercropped maize and intercropped peanut. The diversity and richness of bacteria and fungi decreased in intercropped maize rhizosphere soil, whereas the richness of fungi increased intercropped peanut. RB41, Candidatus-udaeobacter, Stropharia, Fusarium and Penicillium were positively correlated with soil peroxidase activity, and negatively correlated with soil protease and dehydrogenase activities. In addition, intercropping enriched the functional diversity of the bacterial community and reduced pathogenic fungi. Conclusion Intercropping changed the composition and diversity of the bacterial and fungal communities in rhizosphere soil, enriched beneficial microbes, increased the nitrogen content of intercropped maize and provided a scientific basis for promoting intercropping in northeastern China.


2022 ◽  
pp. 1-12
Author(s):  
Seema Sepat ◽  
Kiran Pavuluri ◽  
Vicky Singh ◽  
Anita Kumawat ◽  
Dinesh Kumar

Export Citation Format

Share Document