Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

distal lung
Recently Published Documents


TOTAL DOCUMENTS

268
(FIVE YEARS 57)

H-INDEX

40
(FIVE YEARS 5)

iScience ◽  
2022 ◽  
pp. 103780
Author(s):  
Evelyn Tran ◽  
Tuo Shi ◽  
Xiuwen Li ◽  
Adnan Y. Chowdhury ◽  
Du Jiang ◽  
...  

2022 ◽  
Vol 11 (1) ◽  
pp. 2102450
Author(s):  
Hannah Viola ◽  
Kendra Washington ◽  
Cauviya Selva ◽  
Jocelyn Grunwell ◽  
Rabindra Tirouvanziam ◽  
...  

Author(s):  
Alison Nicole Abele ◽  
Elizabeth S Taglauer ◽  
Maricar Almeda ◽  
Noah Wilson ◽  
Abigail Abikoye ◽  
...  

Background: Antenatal stressors such as chorioamnionitis (CA) increase the risk for bronchopulmonary dysplasia (BPD). Studies have shown that experimental BPD can be ameliorated by postnatal treatment with mesenchymal stromal cell-derived extracellular vesicles (MEx). However, the antenatal efficacy of MEx to prevent BPD is unknown. Objective: To determine whether antenatal MEx therapy attenuates intrauterine inflammation and preserves lung growth in a rat model of CA-induced BPD. Methods: At embryonic day (E)20, rat litters were treated with intra-amniotic injections of saline, endotoxin (ETX) to model chorioamnionitis, MEx, or ETX plus MEx followed by cesarean section delivery with placental harvest at E22. Placental and lung evaluations were conducted at day 0 and day 14, respectively. To assess the effects of ETX and MEx on lung growth in vitro, E15 lung explants were imaged for distal branching. Results: Placental tissues from ETX-exposed pregnancies showed increased expression of inflammatory markers NLRP-3 and IL-1ß and altered spiral artery morphology. Additionally, infant rats exposed to intrauterine ETX had reduced alveolarization and pulmonary vessel density (PVD), increased right ventricular hypertrophy (RVH), and decreased lung mechanics. Intrauterine MEx therapy of ETX-exposed pups reduced inflammatory cytokines, normalized spiral artery architecture, and preserved distal lung growth and mechanics. In vitro studies showed that MEx treatment enhanced distal lung branching and increased VEGF and SPC gene expression. Conclusions: Antenatal MEx treatment preserved distal lung growth and reduced intrauterine inflammation in a model of CA-induced BPD. We speculate that MEx may provide a novel therapeutic strategy to prevent BPD due to antenatal inflammation.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
B. Zhou ◽  
T. R. Stueve ◽  
E. A. Mihalakakos ◽  
L. Miao ◽  
D. Mullen ◽  
...  

Abstract Background Disruption of alveolar epithelial cell (AEC) differentiation is implicated in distal lung diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung adenocarcinoma that impact morbidity and mortality worldwide. Elucidating underlying disease pathogenesis requires a mechanistic molecular understanding of AEC differentiation. Previous studies have focused on changes of individual transcription factors, and to date no study has comprehensively characterized the dynamic, global epigenomic alterations that facilitate this critical differentiation process in humans. Results We comprehensively profiled the epigenomic states of human AECs during type 2 to type 1-like cell differentiation, including the methylome and chromatin functional domains, and integrated this with transcriptome-wide RNA expression data. Enhancer regions were drastically altered during AEC differentiation. Transcription factor binding analysis within enhancer regions revealed diverse interactive networks with enrichment for many transcription factors, including NKX2–1 and FOXA family members, as well as transcription factors with less well characterized roles in AEC differentiation, such as members of the MEF2, TEAD, and AP1 families. Additionally, associations among transcription factors changed during differentiation, implicating a complex network of heterotrimeric complex switching in driving differentiation. Integration of AEC enhancer states with the catalog of enhancer elements in the Roadmap Epigenomics Mapping Consortium and Encyclopedia of DNA Elements (ENCODE) revealed that AECs have similar epigenomic structures to other profiled epithelial cell types, including human mammary epithelial cells (HMECs), with NKX2–1 serving as a distinguishing feature of distal lung differentiation. Conclusions Enhancer regions are hotspots of epigenomic alteration that regulate AEC differentiation. Furthermore, the differentiation process is regulated by dynamic networks of transcription factors acting in concert, rather than individually. These findings provide a roadmap for understanding the relationship between disruption of the epigenetic state during AEC differentiation and development of lung diseases that may be therapeutically amenable.


Author(s):  
Mu-Hang Li ◽  
Leilani M. Marty-Santos ◽  
Paul R. van Ginkel ◽  
Aubrey E. McDermott ◽  
Andrew J. Rasky ◽  
...  

Hox genes encode transcription factors that are critical for embryonic skeletal patterning and organogenesis. The Hoxa5, Hoxb5, and Hoxc5 paralogs are expressed in the lung mesenchyme and function redundantly during embryonic lung development. Conditional loss-of-function of these genes during postnatal stages leads to severe defects in alveologenesis, specifically in the generation of the elastin network, and animals display bronchopulmonary dysplasia (BPD) or BPD-like phenotype. Here we show the surprising results that mesenchyme-specific loss of Hox5 function at adult stages leads to rapid disruption of the mature elastin matrix, alveolar enlargement, and an emphysema-like phenotype. As the elastin matrix of the lung is considered highly stable, adult disruption of the matrix was not predicted. Just 2 weeks after deletion, adult Hox5 mutant animals show significant increases in alveolar space and changes in pulmonary function, including reduced elastance and increased compliance. Examination of the extracellular matrix (ECM) of adult Tbx4rtTA; TetOCre; Hox5afafbbcc lungs demonstrates a disruption of the elastin network although the underlying fibronectin, interstitial collagen and basement membrane appear unaffected. An influx of macrophages and increased matrix metalloproteinase 12 (MMP12) are observed in the distal lung 3 days after Hox5 deletion. In culture, fibroblasts from Hox5 mutant lungs exhibit reduced adhesion. These findings establish a novel role for Hox5 transcription factors as critical regulators of lung fibroblasts at adult homeostasis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ting Wang ◽  
Ning Zhang ◽  
Shipan Fan ◽  
Lianzheng Zhao ◽  
Wanlu Song ◽  
...  
Keyword(s):  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Konstantinos Gkatzis ◽  
Paolo Panza ◽  
Sofia Peruzzo ◽  
Didier YR Stainier

Lung epithelial progenitors differentiate into alveolar type 1 (AT1) and type 2 (AT2) cells. These cells form the air-blood interface and secrete surfactant, respectively, and are essential for lung maturation and function. Current protocols to derive and culture alveolar cells do not faithfully recapitulate the architecture of the distal lung, which influences cell fate patterns in vivo. Here, we report serum-free conditions that allow for growth and differentiation of mouse distal lung epithelial progenitors. We find that Collagen I promotes the differentiation of flattened, polarized AT1 cells. Using these organoids, we performed a chemical screen to investigate WNT signaling in epithelial differentiation. We identify an association between Casein Kinase activity and maintenance of an AT2 expression signature; Casein Kinase inhibition leads to an increase in AT1/progenitor cell ratio. These organoids provide a simplified model of alveolar differentiation and constitute a scalable screening platform to identify and analyze cell differentiation mechanisms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0248798
Author(s):  
Oliver Brookes ◽  
Sonja Boland ◽  
René Lai Kuen ◽  
Dorian Miremont ◽  
Jamileh Movassat ◽  
...  

The epithelial tissues of the distal lung are continuously exposed to inhaled air, and are of research interest in studying respiratory exposure to both hazardous and therapeutic materials. Pharmaco-toxicological research depends on the development of sophisticated models of the alveolar epithelium, which better represent the different cell types present in the native lung and interactions between them. We developed an air-liquid interface (ALI) model of the alveolar epithelium which incorporates cell lines which bear features of type I (hAELVi) and type II (NCI-H441) epithelial cells. We compared morphology of single cells and the structure of cell layers of the two lines using light and electron microscopy. Working both in monotypic cultures and cocultures, we measured barrier function by trans-epithelial electrical resistance (TEER), and demonstrated that barrier properties can be maintained for 30 days. We created a mathematical model of TEER development over time based on these data in order to make inferences about the interactions occurring in these culture systems. We assessed expression of a panel of relevant genes that play important roles in barrier function and differentiation. The coculture model was observed to form a stable barrier akin to that seen in hAELVi, while expressing surfactant protein C, and having a profile of expression of claudins and aquaporins appropriate for the distal lung. We described cavities which arise within stratified cell layers in NCI-H441 and cocultured cells, and present evidence that these cavities represent an aberrant apical surface. In summary, our results support the coculture of these two cell lines to produce a model which better represents the breadth of functions seen in native alveolar epithelium.


Author(s):  
Alsafadi Hani N. ◽  
John Stegmayr ◽  
V. Ptasinski ◽  
Margareta Mittendorfer ◽  
Deniz Bölükbas ◽  
...  

2021 ◽  
Author(s):  
Anthea Weng ◽  
Mariana Maciel-Herrerias ◽  
Satoshi J Watanabe ◽  
Annette S. Flozak ◽  
Lynn Welch ◽  
...  

Epithelial polyploidization post-injury is a conserved phenomenon, recently shown to improve barrier restoration during wound healing. Whether lung injury can induce alveolar epithelial polyploidy is not known. We show that bleomycin injury induces AT2 cell hypertrophy and polyploidy. AT2 polyploidization is also seen in short term ex vivo cultures, where AT2-to-AT1 trans-differentiation is associated with substantial binucleation due to failed cytokinesis. Both hypertrophic and polyploid features of AT2 cells can be attenuated by inhibiting the integrated stress response (ISR) using the small molecule ISRIB. These data suggest that AT2 polyploidization may be a feature of alveolar epithelial injury. As AT2 cells serve as facultative progenitors for the distal lung epithelium, a propensity for injury-induced binucleation has implications for AT2 self-renewal and regenerative potential upon re-injury, which may benefit from targeting the ISR.


Export Citation Format

Share Document