Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

steady state performance
Recently Published Documents


TOTAL DOCUMENTS

666
(FIVE YEARS 71)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
Mahdi Zare Mehrjardi

Today, considerable uses of aerodynamic journal bearings have attracted the attention of many researchers in the field of tribology. Therefore, the theoretical and experimental analysis of their performance has been the subject of many researches. Growing application of the gas journal bearings is due to their capability in various engineering fields such as instrumentation and high-speed machines like spindles, small-scale turbomachines, and precision gyroscopes, dental milling machines, and many other rotor-bearing systems. Upgrading the performance of gas bearings by changing their geometry or using new compressible lubricants has always been one of the suggestions proposed by the tribology researchers. Recently, the development of new technologies such as laser milling and lithography increased the possibility of creating textured surfaces as a way to improve the performance of journal bearings. So, in this study, the effects of texture geometry on the steady-state performance of two-lobe noncircular aerodynamic journal bearings are presented. For this purpose, the governing Reynolds equation of hydrodynamic gas lubrication is analyzed by finite element method according to the changes of the lubricant film thickness in presence of the cubical, cylindrical, and ellipsoidal surface textures. Results show that the creation of textures on the lower lobe compared to the upper lobe or the whole surface is more effective on the performance of two-lobe aerodynamic bearings. Also, increasing both the dimple depth and the amount of bearings noncircularity, especially at shallow texture depth, cause more significant changes in the lubricant film pressure distribution and the bearing performance parameters such as load-carrying capacity, attitude angle, and frictional power loss. Further, it is obvious that the creation of cubical, cylindrical and ellipsoidal textures especially at shallow depth with an increase in the noncircularity of bearings’ geometry have a higher impact on the steady-state performance of the studied rotor-bearing system, respectively.


2021 ◽  
Vol 2128 (1) ◽  
pp. 012027
Author(s):  
Allam M. Allam ◽  
A.S. Ibrahim ◽  
Essam Nabil

Abstract This paper addresses a viable single loop PID controller on the bases of optimization algorithms for parallelly connected DC-DC converters to improve current sharing, improve the systems dynamics and guarantee good steady-state performance simultaneously. Because of inconvenience and lack of accuracy of Ziegler-Nichols rule in tuning PID controller parameters, an optimized controller design strategy with the purpose of enhancing the system performance is introduced in this paper. The PID is tuned by the traditional Ziegler -Nichols technique along with three other different algorithms: Genetic algorithm, whale algorithm and grey wolf algorithm. A comparison has been established between these algorithms based on the objective function value, execution time, overshoot, settling time and current sharing. The simulation results were collected to authenticate effectiveness of the proposed techniques and to evaluate the advantages of these optimization algorithms over the traditional tuning method.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xueqin Yang ◽  
Xingyu Liu ◽  
Jichao Li ◽  
Binbin Zhang

In a grid-connected power generation system, the grid-connected current of the inverter is sensitive to nonlinear factors such as periodic disturbance of grid voltage, which results in grid-connected current waveform distortion. By establishing a single-phase photovoltaic grid-connected inverter control system model, designing an inverse current fractional-order PI (PIλ or FO-PI) controller and the dynamic and steady-state performance, antidisturbance and grid connection inversion characteristics of the system are simulated and compared under the action of the integer-order PI controller and fractional-order PI controller. The quality of the inverter grid-connected current is analyzed by using the fast Fourier transform (FFT). The simulation results show that the fractional-order control system can reduce the total harmonic distortion (THD) of the grid-connected current and dynamic performance and antidisturbance ability of the improving system while satisfying the steady-state performance indexes.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012031
Author(s):  
I Elizarov ◽  
T Licklederer

Abstract Prosumer-based heat networks are a new concept in district heating systems that uses the ability of prosumers to operate as either producers or consumers. This type of networks allows for utilizing distributed heat generation and renewable energy sources. A broad range of individual operating modes, heat generation technologies, and topologies determine complex thermo-hydraulic behavior of such networks. Simulations help gain insights into their properties. In this paper, a Modelica library ProsNet is presented for such simulations. It is designed to set up models of prosumer-based heat networks to investigate their dynamic and steady-state performance in a user-friendly way. Important models of the library are described in more detail. Finally, a successful validation of the developed components was performed by comparing simulation results with another software for modeling bidirectional heat networks in steady-state.


Export Citation Format

Share Document