Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

periodontal ligament cells
Recently Published Documents


TOTAL DOCUMENTS

1120
(FIVE YEARS 202)

H-INDEX

60
(FIVE YEARS 6)

2021 ◽  
Vol 12 (3) ◽  
pp. 340-348
Author(s):  
Avigdor Klinger

While dental plaque is considered the etiological factor for the development of periodontal and peri-implant diseases, many studies from recent years point to smoking as the most significant environmental factor contributing to disease severity. This effect is evident at the epidemiological level as well as on our understanding of the biological mechanisms involved. The present review presents abundant scientific evidence showing that smoking negatively affects the local blood supply, interferes with the reaction of the immune system to bacterial insult, is toxic to gingival and periodontal ligament cells, impedes the response of the periodontal attachment apparatus to treatment, and is linked to dental implant failure. Over the past 30 years, more than 200 million people have died as a result of smoking tobacco use. There are more than 1 billion current smokers worldwide and these numbers are likely to increase over the coming years. And yet, the effect of smoking on periodontal and peri-implant health has been a controversial issue. It was argued, that it is difficult to prove such an effect due to poor adherence of smokers to oral hygiene, which creates a confounding factor inseparable from the effect of the smoking itself. Unfortunately, even some of the more recent publications cast doubt as for the importance of smoking cessation on peri-implant health, as a prerequisite for a successful treatment. The aim of the present review was to question the validity of these reports by presenting multiple evidence to support the quiet widely accepted common knowledge that is the numerous hazards to the oral biology which are the result of a heavy and prolonged smoking habit.


Author(s):  
Pi En Chang ◽  
Shujin Li ◽  
Hyun-Yi Kim ◽  
Dong-Joon Lee ◽  
Yoon Jeong Choi ◽  
...  

Objectives: Mechanical stimuli are essential for the maintenance of periodontal ligament (PDL) homeostasis. Although there are several studies on atrophic changes in PDL due to occlusal hypofunction, the underlying mechanism is still unknown. Here, we aimed to explore the changes of gene expression in occlusal hypofunctional PDL and elucidate the related role in maintaining the PDL homeostasis.Methods: To investigate the transcriptomic difference between control and hypofunctional PDL tissue from patients, RNA sequencing was performed on 34 human teeth. The atrophic changes in PDL were evaluated by histological analysis. The effect of the Bardet-Biedl syndrome 7 (BBS7) knockdown was evaluated by the RT-qPCR, Western blot, wound healing, and tubule formation assay.Results: We detected that the expression of BBS7 was downregulated in occlusal hypofunctional PDL through RNA sequencing. Dynamic changes, including the number of periodontal ligament cells, alignment of collagen fibers, diameter of blood vessels, appearance of primary cilia, and torturous oxytalan fibers, were observed following occlusal hypofunction. Furthermore, Sonic hedgehog signaling (Shh) activity was closely associated with BBS7 expression in PDL cells. In addition, the cell migration and angiogenesis were also suppressed by BBS7 knockdown in vitro.Conclusion: We suggest that BBS7 plays an essential role in maintaining Shh signaling activity for PDL homeostasis.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xinwei Liu ◽  
Yue Zhou

Background. Long noncoding RNAs (lncRNAs) are dysregulated in periodontitis development and involved in osteogenesis. The current study was aimed at investigating the function of lncRNA ANRIL in periodontal ligament cells (PDLCs) and potential molecular mechanisms. Methods. Firstly, the level of ANRIL was tested by qPCR. Then, PDLCs were treated with a mineralizing solution to induce osteogenic differentiation. ALP activity was measured, and protein levels of BMP2, Osterix, and OCN were measured by Western blot. A target of ANRIL was verified using dual-luciferase reporter assay. miR-7 level was measured by qPCR, and the signals of the NF-κB pathway were tested by Western blot. Results. ANRIL expression was downregulated in PDL tissues. Next, ALP activity and protein levels of BMP2, Osterix, and OCN were increased to show that PDLCs were differentiated. ANRIL level was increased in differential PDLCs, in which knockdown inhibited osteogenic differentiation. Then, miR-7 was found as a target of ANRIL. The miR-7 level was upregulated in PDL tissues and reduced in differential PDLCs. Inhibition of miR-7 suppressed ALP activity and BMP2, Osterix, and OCN expression. Moreover, inhibition of miR-7 reversed the effects on the osteogenic differentiation induced by knockdown of ANRIL. Besides, the levels of p-P65 and p-IκBα were elevated by ANRIL downregulation and were rescued by suppressing miR-7. Conclusions. Knockdown of ANRIL inhibited osteogenic differentiation via sponging miR-7 through the NF-κB pathway, suggesting that ANRIL might be a therapeutic target for periodontitis.


2021 ◽  
pp. 088532822110502
Author(s):  
Adarsh Rajeswari Krishnankutty ◽  
Shamna Najeema Sulaiman ◽  
Arun Sadasivan ◽  
Roy Joseph ◽  
Manoj Komath

This report demonstrates the development of a degradable quaternary ammonium derivative of chitosan (QC) composited with strontium-containing nanoapatite (SA) for bioactivity. The material was made as porous membrane by solution casting and freeze drying, for guided tissue regeneration (GTR) applications. The micromorphology, tensile strength, suture pull-out strength, degradation ( in vitro, in phosphate buffered saline), and cytocompatibility (using human periodontal ligament cells) were tested to investigate the effect of derivatization and SA addition. The porosity of the membranes increased with increasing SA content and so did the tensile strength and the degradation. The suture pull-out strength, however, showed a decrease. The cell culture evaluation endorsed biocompatibility. The composite with 1.5 mg SA per 1 mL QC was found to have optimal qualities for GTR applications.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259966
Author(s):  
Naoto Haruyama ◽  
Takayoshi Yamaza ◽  
Shigeki Suzuki ◽  
Bradford Hall ◽  
Andrew Cho ◽  
...  

Amelogenins, major extra cellular matrix proteins of developing tooth enamel, are predominantly expressed by ameloblasts and play significant roles in the formation of enamel. Recently, amelogenin has been detected in various epithelial and mesenchymal tissues, implicating that it might have distinct functions in various tissues. We have previously reported that leucine rich amelogenin peptide (LRAP), one of the alternate splice forms of amelogenin, regulates receptor activator of NF-kappa B ligand (RANKL) expression in cementoblast/periodontal ligament cells, suggesting that the amelogenins, especially LRAP, might function as a signaling molecule in bone metabolism. The objective of this study was to identify and define LRAP functions in bone turnover. We engineered transgenic (TgLRAP) mice using a murine 2.3kb α1(I)-collagen promoter to drive expression of a transgene consisting of LRAP, an internal ribosome entry site (IRES) and enhanced green fluorescent protein (EGFP) to study functions of LRAP in bone formation and resorption. Calvarial cell cultures from the TgLRAP mice showed increased alkaline phosphatase (ALP) activity and increased formation of mineralized nodules compared to the cells derived from wild-type (WT) mice. The TgLRAP calvarial cells also showed an inhibitory effect on osteoclastogenesis in vitro. Gene expression comparison by quantitative polymerase chain reaction (Q-PCR) in calvarial cells indicated that bone formation makers such as Runx2, Alp, and osteocalcin were increased in TgLRAP compared to the WT cells. Meanwhile, Rankl expression was decreased in the TgLRAP cells in vitro. The ovariectomized (OVX) TgLRAP mice resisted bone loss induced by ovariectomy resulting in higher bone mineral density in comparison to OVX WT mice. The quantitative analysis of calcein intakes indicated that the ovariectomy resulted in increased bone formation in both WT and TgLRAP mice; OVX TgLRAP appeared to show the most remarkably increased bone formation. The parameters for bone resorption in tissue sections showed increased number of osteoclasts in OVX WT, but not in OVX TgLRAP over that of sham operated WT or TgLRAP mice, supporting the observed bone phenotypes in OVX mice. This is the first report identifying that LRAP, one of the amelogenin splice variants, affects bone turnover in vivo.


Export Citation Format

Share Document