Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

thermochemical conversion
Recently Published Documents


TOTAL DOCUMENTS

776
(FIVE YEARS 252)

H-INDEX

50
(FIVE YEARS 8)

2022 ◽  
pp. 285-332
Author(s):  
Mejdi Jeguirim ◽  
Besma Khiari

2022 ◽  
pp. 281-302
Author(s):  
Sabariswaran Kandasamy ◽  
Narayanamoorthy Bhuvanendran ◽  
Mathiyazhagan Narayanan ◽  
Zhixia He

Author(s):  
Tahereh Jalalabadi ◽  
Behdad Moghtaderi ◽  
Jessica Allen

The effect of pressure on the thermochemical conversion of woody biomass and lignin in the presence of carbonate additives has been investigated at moderate temperatures (600 and 800°C). A ternary...


2022 ◽  
pp. 379-394
Author(s):  
Yi Fang ◽  
Wangliang Li ◽  
Siming You

Author(s):  
S. V. Vasilevich ◽  
M. V. Malko ◽  
D. V. Degterov ◽  
A. N. Asadchyi

The paper discusses results of an experimental study of the thermal decomposition of pyrolysis tar in a homogeneous process and in the presence of a catalyst. Experiments on thermal decomposition of pyrolysis tar were carried out under isothermal conditions in a laboratory setup at temperatures of 300, 400, 450 and 500 °C. The rate of the homogeneous process of thermal decomposition of tar and maximal degrees of decomposition were determined. According to the data of this work, the activation energy of the homogeneous process was 320 kJ/mol. It was found that the rate of thermal decomposition of the tar increases in the case of introducing samples of natural dolomites into the reaction zone, as well as a composite material based on them. This increase is due to the occurrence of a heterogeneous catalytic decomposition reaction of the pyrolysis tar. The apparent activation energy of this process was 210 kJ/mol (when using dolomites) and 202 kJ/mol (when using composites). It was noted that the composite material has significantly more favorable mechanical properties than dolomite. Based on the established data, it was concluded that the creation of composite catalysts for the thermal decomposition of heavy hydrocarbons formed in the processes of thermochemical conversion of biomass is promising.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 63
Author(s):  
Amir Masoud Parvanian ◽  
Nasrin Sadeghi ◽  
Ahmad Rafiee ◽  
Cameron J. Shearer ◽  
Mehdi Jafarian

CO2 reutilization processes contribute to the mitigation of CO2 as a potent greenhouse gas (GHG) through reusing and converting it into economically valuable chemical products including methanol, dimethyl ether, and methane. Solar thermochemical conversion and photochemical and electrochemical CO2 reduction processes are emerging technologies in which solar energy is utilized to provide the energy required for the endothermic dissociation of CO2. Owing to the surface-dependent nature of these technologies, their performance is significantly reliant on the solid reactant/catalyst accessible surface area. Solid porous structures either entirely made from the catalyst or used as a support for coating the catalyst/solid reactants can increase the number of active reaction sites and, thus, the kinetics of CO2 reutilization reactions. This paper reviews the principles and application of porous materials for CO2 reutilization pathways in solar thermochemical, photochemical, and electrochemical reduction technologies. Then, the state of the development of each technology is critically reviewed and evaluated with the focus on the use of porous materials. Finally, the research needs and challenges are presented to further advance the implementation of porous materials in the CO2 reutilization processes and the commercialization of the aforementioned technologies.


2021 ◽  
Vol 10 (16) ◽  
pp. e421101623844
Author(s):  
Paulo Wendel Corderceira Costa ◽  
Jornandes Dias da Silva

The hydrodynamic characterization of the solar-driven CO2 reforming of methane through b-SiC open-cell foam in a fluidized bed configuration is performed by reacting Methane (CH4) with carbon dioxide (CO2). The mathematical modelling is important to design and optimize the reforming methods. Usually, the reforming methods's application through b-SiC foam bed improves the heat transfer and mass transfer due to high porosity and surface area of the b-SiC foam. Fluidized Bed Membrane (FBM) Reformers can be substantially studied as a promising equipment to investigate the thermochemical conversion of CH4 using CO2 to produce solar hydrogen. This work has as main objective a theoretical modelling to describe the process variables of the solar-driven CO2 reforming of methane in the FBM reformer. The FBM reformer is filled with b-SiC open-cell foam where the thermochemical conversion is carried out. The model variables describe the specific aims of work and these objectives can be identified from each equation of the developed mathematical model. The present work has been proposed to study two specific aims as (i) The effective thermal conductivity's effect of the solid phase and (ii) molar flows of chemical components. The endothermic reaction temperature's profiles are notably increased as the numeral value of the effective thermal conductivity's effect of the solid phase. is rised. The solar-driven CO2 reforming method is suggested to improve the Production Rate (PR) of H2 regarding the PR of CO.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2255
Author(s):  
Taís Eliane Marques ◽  
York Castillo Santiago ◽  
Maria Luiza Grillo Renó ◽  
Diego Mauricio Yepes Maya ◽  
Leandro Alcoforado Sphaier ◽  
...  

In this work, an energetic and environmental evaluation of the electricity generation process through refuse-derived fuel (RDF) gasification coupled to a gas microturbine (GM) was performed. Two scenarios are considered with different gasification agents in RDF gasification modeling: air and air enriched with oxygen. A thermodynamic chemical equilibrium approach was used to analyze the gasification parameters. The results of RDF gasification indicate a maximum value of syngas low heating value (LHV) equal to 8.0 MJ/Nm3, obtained for an equivalence ratio of 0.3. The use of these syngas in the gas microturbine produces 79.6 kW of electrical power. For the environmental evaluation of gasification and electricity generation systems, the Life Cycle Assessment methodology was employed. The calculated environmental impacts indicate that the emission of contaminants from fossil fuel combustion (in the stage of transport by heavy load vehicles) and that the electricity consumption for equipment operation (in the stage of municipal solid waste pretreatment) contributes to environmental pollution. On the other hand, electricity generation through GM presented lower environmental impact for all analyzed categories, suggesting that the electricity generation from gas obtained from gasification could be a viable option for thermochemical conversion of RDF and its subsequent energetic use.


Export Citation Format

Share Document