Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

laboratory astrophysics
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 15)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Christopher Fryer ◽  
Shane Coffing ◽  
Suzannah Wood ◽  
Christopher Fontes ◽  
Todd Urbatsch

Author(s):  
Rémi Bérard ◽  
Kremena Makasheva ◽  
Karine Demyk ◽  
Aude Simon ◽  
Dianailys Nuñez Reyes ◽  
...  

Laboratory experiments are essential in exploring the mechanisms involved in stardust formation. One key question is how a metal is incorporated into dust for an environment rich in elements involved in stardust formation (C, H, O, Si). To address experimentally this question we have used a radiofrequency cold plasma reactor in which cyclic organosilicon dust formation is observed. Metallic (silver) atoms were injected in the plasma during the dust nucleation phase to study their incorporation in the dust. The experiments show formation of silver nanoparticles (~15 nm) under conditions in which organosilicon dust of size 200 nm or less is grown. The presence of AgSiO bonds, revealed by infrared spectroscopy, suggests the presence of junctions between the metallic nanoparticles and the organosilicon dust. Even after annealing we could not conclude on the formation of silver silicates, emphasizing that most of silver is included in the metallic nanoparticles. The molecular analysis performed by laser mass spectrometry exhibits a complex chemistry leading to a variety of molecules including large hydrocarbons and organometallic species. In order to gain insights into the involved chemical molecular pathways, the reactivity of silver atoms/ions with acetylene was studied in a laser vaporization source. Key organometallic species, AgnC2Hm (n = 1–3; m = 0–2), were identified and their structures and energetic data computed using density functional theory. This allows us to propose that molecular Ag–C seeds promote the formation of Ag clusters but also catalyze hydrocarbon growth. Throughout the article, we show how the developed methodology can be used to characterize the incorporation of metal atoms both in the molecular and dust phases. The presence of silver species in the plasma was motivated by objectives finding their application in other research fields than astrochemistry. Still, the reported methodology is a demonstration laying down the ground for future studies on metals of astrophysical interest, such as iron.


2020 ◽  
Vol 6 (1) ◽  
pp. 30-41
Author(s):  
U. Chaulagain ◽  
C. Stehlé ◽  
P. Barroso ◽  
M. Kozlova ◽  
J. Nejdl ◽  
...  

Radiative shocks are strong shocks characterized by plasma at a high temperature emitting an important fraction of its energy as radiation. Radiative shocks are commonly found in many astrophysical systems and are templates of radiative hydrodynamic flows, which can be studied experimentally using high-power lasers. This is not only important in the context of laboratory astrophysics but also to benchmark numerical studies. We present details on the design of experiments on radiative shocks in xenon gas performed at the kJ scale PALS laser facility. It includes technical specifications for the tube targets design and numerical studies with the 1-D radiative hydrodynamics code MULTI. Emphasis is given to the technical feasibility of an XUV imaging diagnostic with a 21 nm (~58 eV) probing beam, which allows to probe simultaneously the post-shock and the precursor region ahead of the shock. The novel design of the target together with the improved X-ray optics and XUV source allow to show both the dense post-shock structure and the precursor of the radiative shock.


Atoms ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 21 ◽  
Author(s):  
Elmar Träbert

Emission lines of singly charged ions populate many astrophysical spectra. However, the interpretation of the line intensities (usually line ratios) often depends on the transition rates of the decays of very long-lived low-lying levels. For example, the line ratio of two electric-dipole forbidden transitions in the 3s 2 3p 3 ground configuration of singly ionized sulfur (ion S + , spectrum S II) has been interpreted in terms of a density diagnostic for planetary nebulae, i.e., for densities in the order of 10 4 cm − 3 . The predicted lifetimes of the 2 D 3 / 2 , 5 / 2 o levels are in the order of one hour. Modeling indicates that a 10% uncertainty of the lifetime determination in this case corresponds to a 50% uncertainty of the density diagnostic. The available theoretical lifetime predictions scatter by much more than 10%. Considerations about an experimental approach are presented with the goal of instigating a measurement of the actual level lifetimes.


2020 ◽  
Vol 52 (2) ◽  
Author(s):  
N. Brickhouse ◽  
G. J. Ferland ◽  
S. Milam ◽  
E. Sciamma-O'Brien ◽  
A. Smale ◽  
...  

Export Citation Format

Share Document