Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Journal of Micropalaeontology
Latest Publications


TOTAL DOCUMENTS

810
(FIVE YEARS 23)

H-INDEX

31
(FIVE YEARS 1)

Published By Copernicus Gmbh

2041-4978, 0262-821x

2021 ◽  
Vol 40 (2) ◽  
pp. 195-223
Author(s):  
Joachim Schönfeld ◽  
Valentina Beccari ◽  
Sarina Schmidt ◽  
Silvia Spezzaferri

Abstract. Living Ammonia species and an inventory of dead assemblages from Adriatic subtidal, nearshore environments were investigated at four stations off Bellaria, Italy. Ammonia falsobeccarii, Ammonia parkinsoniana, Ammonia tepida, and Ammonia veneta were recognized in the living (rose-bengal-stained) fauna, and Ammonia bellaria n. sp. is described herein for the first time. Ammonia beccarii was only found in the dead assemblage. The biometry of 368 living individuals was analysed by using light microscopic and scanning electron microscopic images of three aspects. A total of 15 numerical and 8 qualitative parameters were measured and assessed, 5 of which were recognized to be prone to a certain subjectivity of the observer. The accuracy of numerical data as revealed by the mean residuals of parallel measurements by different observers ranged from 0.5 % to 5.5 %. The results indicated a high degree of intraspecific variability. The test sizes of the individual species were log-normally distributed and varied among the stations. Parameters not related to the growth of the individuals, i.e. flatness of the tests, dimensions of the second-youngest chamber, proloculus, umbilical and pore diameter, sinistral–dextral coiling, and umbilical boss size, were recognized as being species-distinctive in combination. They may well supplement qualitative criteria that were commonly used for species discrimination such as a lobate outline, a subacute or rounded peripheral margin, or the degree of ornamentation on the spiral and umbilical sides. The averages of the measured parameters were often lower than the range of previously published values, mainly because the latter were retrieved from a few adult specimens and not from the whole assemblage as in the present approach. We conclude that the unprecedented high proportions of Ammonia beccarii in the northern Adriatic may well be artificial. A robust species identification without genetic analyses is possible by considering designated biometric parameters. This approach is also applicable to earlier literature data, and their re-assessment is critical for a correct denomination of recent genotypes.


2021 ◽  
Vol 40 (2) ◽  
pp. 175-193
Author(s):  
Frida S. Hoem ◽  
Isabel Sauermilch ◽  
Suning Hou ◽  
Henk Brinkhuis ◽  
Francesca Sangiorgi ◽  
...  

Abstract. Improvements in our capability to reconstruct ancient surface-ocean conditions based on organic-walled dinoflagellate cyst (dinocyst) assemblages from the Southern Ocean provide an opportunity to better establish past position, strength and oceanography of the subtropical front (STF). Here, we aim to reconstruct the late Eocene to early Miocene (37–20 Ma) depositional and palaeoceanographic history of the STF in the context of the evolving Tasmanian Gateway as well as the potential influence of Antarctic circumpolar flow and intense waxing and waning of ice. We approach this by combining information from seismic lines (revisiting existing data and generating new marine palynological data from Ocean Drilling Program (ODP) Hole 1168A) in the western Tasmanian continental slope. We apply improved taxonomic insights and palaeoecological models to reconstruct the sea surface palaeoenvironmental evolution. Late Eocene–early Oligocene (37–30.5 Ma) assemblages show a progressive transition from dominant terrestrial palynomorphs and inner-neritic dinocyst taxa as well as cysts produced by heterotrophic dinoflagellates to predominantly outer-neritic/oceanic autotrophic taxa. This transition reflects the progressive deepening of the western Tasmanian continental margin, an interpretation supported by our new seismic investigations. The dominance of autotrophic species like Spiniferites spp. and Operculodinium spp. reflects relatively oligotrophic conditions, like those of regions north of the modern-day STF. The increased abundance in the earliest Miocene of Nematosphaeropsis labyrinthus, typical for modern subantarctic zone (frontal) conditions, indicates a cooling and/or closer proximity of the STF to the site . The absence of major shifts in dinocyst assemblages contrasts with other records in the region and suggests that small changes in surface oceanographic conditions occurred during the Oligocene. Despite the relatively southerly (63–55∘ S) location of Site 1168, the rather stable oceanographic conditions reflect the continued influence of the proto-Leeuwin Current along the southern Australian coast as Australia continued to drift northward. The relatively “warm” dinocyst assemblages at ODP Site 1168, compared with the cold assemblages at Antarctic Integrated Ocean Drilling Program (IODP) Site U1356, testify to the establishment of a pronounced latitudinal temperature gradient in the Oligocene Southern Ocean.


2021 ◽  
Vol 40 (2) ◽  
pp. 163-173
Author(s):  
Yemao Hou ◽  
Mario Canul-Ku ◽  
Xindong Cui ◽  
Rogelio Hasimoto-Beltran ◽  
Min Zhu

Abstract. Vertebrate microfossils have broad applications in evolutionary biology and stratigraphy research areas such as the evolution of hard tissues and stratigraphic correlation. Classification is one of the basic tasks of vertebrate microfossil studies. With the development of techniques for virtual paleontology, vertebrate microfossils can be classified efficiently based on 3D volumes. The semantic segmentation of different fossils and their classes from CT data is a crucial step in the reconstruction of their 3D volumes. Traditional segmentation methods adopt thresholding combined with manual labeling, which is a time-consuming process. Our study proposes a deep-learning-based (DL-based) semantic segmentation method for vertebrate microfossils from CT data. To assess the performance of the method, we conducted extensive experiments on nearly 500 fish microfossils. The results show that the intersection over union (IoU) performance metric arrived at least 94.39 %, meeting the semantic segmentation requirements of paleontologists. We expect that the DL-based method could also be applied to other fossils from CT data with good performance.


2021 ◽  
Vol 40 (2) ◽  
pp. 145-161
Author(s):  
Bridget S. Wade ◽  
Mohammed H. Aljahdali ◽  
Yahya A. Mufrreh ◽  
Abdullah M. Memesh ◽  
Salih A. AlSoubhi ◽  
...  

Abstract. The Rashrashiyah Formation of the Sirhan Basin in northern Saudi Arabia contains diverse assemblages of planktonic foraminifera. We examined the biostratigraphy, stratigraphic range and preservation of upper Eocene planktonic foraminifera. Assemblages are well-preserved and diverse, with 40 species and 11 genera. All samples are assigned to the Priabonian Globigerinatheka semiinvoluta Highest Occurrence Zone (E14), consistent with calcareous nannofossil biostratigraphy indicating Zone CNE17. Well-preserved planktonic foraminifera assemblages from the lower part of the upper Eocene are rare worldwide. Our study provides new insights into the stratigraphic ranges of many species. We find older (Zone E14) stratigraphic occurrences of several species of Globoturborotalita previously thought to have evolved in the latest Eocene (Zone E15, E16) or Oligocene; these include G. barbula, G. cancellata, G. gnaucki, G. pseudopraebulloides, and G. paracancellata. Older stratigraphic occurrences for Dentoglobigerina taci and Subbotina projecta are also found, and Globigerinatheka kugleri occurs at a younger stratigraphic level than previously proposed. Our revisions to stratigraphic ranges indicate that the late Eocene had a higher tropical–subtropical diversity of planktonic foraminifera than hitherto reported.


2021 ◽  
Vol 40 (2) ◽  
pp. 101-144
Author(s):  
Francesco Miniati ◽  
Carlotta Cappelli ◽  
Simonetta Monechi

Abstract. We present a taxonomic revision of the family Fasciculithaceae focused on forms that characterize the early evolution of this family group, which are currently included within the genera Gomphiolithus, Diantholitha, Lithoptychius and Fasciculithus. The investigation approach is based on a combined light microscope (LM) and scanning electron microscope (SEM) analysis of specimens from well-preserved ODP–DSDP site material (ODP Site 1209; Site 1262; ODP Site 1267; DSDP Site 356; DSDP Site 119) and outcrops (Bottaccione and Contessa, Italy; Qreiya, Egypt) across the Danian–Selandian transition. The direct LM–SEM comparison of the same individual specimen provides clarification of several taxa that were previously described only with the LM. One new genus (Tectulithus), five new combinations (Tectulithus janii, Tectulithus merloti, Tectulithus pileatus, Tectulithus stegastos and Tectulithus stonehengei) and six new species are defined (Diantholitha pilula, Diantholitha toquea, Lithoptychius galeottii, Lithoptychius maioranoae, Tectulithus pagodiformis and Fasciculithus realeae). The main characteristics useful to identify fasciculiths with the LM are provided, together with a 3D–2D drawing showing the main structural features. The accurate taxonomic characterization grants the development of an evolutionary lineage that documents a great fasciculith diversification during the late Danian and early Selandian. Four different well-constrained events have been documented: the lowest occurrence (LO) of Gomphiolithus, the paracme of Fasciculithaceae at the top of Chron C27r (PTC27r), the radiation of Diantholitha (LO Diantholitha), the paracme of Fasciculithaceae at the base of Chron C26r (PBC26r), the radiation of Lithoptychius (LO Lithoptychius) and the radiation of Tectulithus (lowest common occurrence of Tectulithus) that shows the biostratigraphic relevance of this group across the Danian–Selandian transition.


2021 ◽  
Vol 40 (2) ◽  
pp. 75-99
Author(s):  
Sabine Keuter ◽  
Jeremy R. Young ◽  
Gil Koplovitz ◽  
Adriana Zingone ◽  
Miguel J. Frada

Abstract. Coccolithophores are a diverse group of calcifying phytoplankton, which are responsible for a large part of the modern oceanic carbonate production. Here, we describe novel or poorly known coccolithophores and novel life cycle combination coccospheres detected in samples collected either in the Gulf of Aqaba in the northern Red Sea or in the Gulf of Naples in the western Mediterranean. These include Syracosphaera winteri, for which detached coccoliths have previously been recorded but both a formal description and taxonomic affiliation were lacking, and five undescribed sets of combination cells linking HET and HOL forms for S. pulchra, S. mediterranea, S. azureaplaneta, S. lamina and S. orbicula. We also propose the replacement name S. kareniae for the fossil species Deutschlandia gaarderae. We describe a new species of the genus Ophiaster, O. macrospinus, displaying a unique morphological and ecological distribution as well as putative combination cells of two variants of the deep-dwelling Florisphaera profunda, which provide new insights on the affiliation of this genus within the Calcihaptophycideae. Additionally, in the family Papposphaeraceae we detected a new species, Pappomonas vexillata, and combination cells of Picarola margalefi and of a species resembling Papposphaera arctica. Finally, we detected three novel, unpaired holococcolithophore forms (Calyptrosphaera lluisae, Calicasphaera bipora and one form designated as Holococcolithophore A). Overall, this set of novel observations and ensuing discussions provide further insights into the diversity, evolution and life cycle complexity of coccolithophores in the oceans.


2021 ◽  
Vol 40 (1) ◽  
pp. 61-74
Author(s):  
Julien Richirt ◽  
Magali Schweizer ◽  
Aurélia Mouret ◽  
Sophie Quinchard ◽  
Salha A. Saad ◽  
...  

Abstract. Ammonia is one of the most widespread foraminiferal genera worldwide. Three phylotypes (Ammonia sp. T1, T2 and T6), commonly encountered in the northeast Atlantic, are usually associated with the morphospecies Ammonia tepida. The biogeographic distribution of these three types was previously investigated in coastal environments around Great Britain based on genetic assignations. A new method was recently developed to recognize these three phylotypes based on morphological criteria (i.e. pore size and suture elevation on spiral side), avoiding the need to use molecular analyses to identify them. The results presented here allow us to validate the consistency of the morphometric determination method but also to define more precisely the pore size variability of each of the three phylotypes, which is a main criterion for their recognition. Moreover, these results, combined with earlier molecular and morphological data, enable us to refine the biogeographic distribution previously established by genetic analyses alone. The biogeographical distribution pattern presented here supports the putatively invasive character of Ammonia sp. T6, by suggesting that this phylotype is currently spreading out over large areas and is supplanting autochthonous phylotypes (T1 and T2) along the coastlines of the British Isles and northern France. In fact, only the southwest coast of England and Ireland and the northwest coast of France have not been colonized by Ammonia sp. T6 yet. Our results also suggest that within the areas colonized by phylotype T6, T2 may find refuges in the inner parts of estuaries. We further suggest that the absence of Ammonia sp. T6 in the western part of the English Channel may be explained by the general surface current circulation pattern, which impedes further expansion. The high reliability of the determination method of phylotypes T1, T2 and T6 based on morphology also allows us to quickly generate large datasets for sub-recent and fossil material. This new method will make it possible to gain an understanding of the ecological differences between the three phylotypes and of the historical changes in their distribution patterns (for example due to changing anthropogenic factors). Finally, it will allow us to confirm or invalidate the putative invasive character of phylotype T6.


2021 ◽  
Vol 40 (1) ◽  
pp. 37-60
Author(s):  
Alix G. Cage ◽  
Anna J. Pieńkowski ◽  
Anne Jennings ◽  
Karen Luise Knudsen ◽  
Marit-Solveig Seidenkrantz

Abstract. Morphologically similar benthic foraminiferal taxa can be difficult to separate. Aside from causing issues in taxonomy, incorrect identifications complicate our understanding of species-specific ecological preferences and result in flawed palaeoenvironmental reconstructions and geochemical results. Over the years, a number of studies have grouped together several key Arctic–North Atlantic species in various combinations, despite their distinct environmental preferences and/or stratigraphical differences, causing great confusion in the literature. These species include Cassidulina laevigata, Cassidulina neoteretis, Cassidulina teretis, Paracassidulina neocarinata, Islandiella helenae, and Islandiella norcrossi. Here, we provide for the first time a detailed comparison of these taxa. We present a compilation of the original species descriptions, along with clear, illustrated guidelines on how to separate these taxa to circumvent taxonomic confusion. We acknowledge that some features cannot easily be seen with a standard low-powered microscope, especially if specimens are not well preserved. In those cases, we recommend the following actions: (i) always strive to make a precise identification and at least differentiate between the three genera; (ii) where C. neoteretis and C. teretis cannot be separated, and where the stratigraphical context does not make the species identification obvious, specimens belonging to these taxa should be reported as C. teretis/C. neoteretis; and (iii) where specimens in a sample cannot be confidently assigned to a specific species of Islandiella or Cassidulina, specimens should be grouped as Islandiella spp. or Cassidulina spp., followed by naming the most dominant species in brackets. The improved identification of Cassidulina, Paracassidulina, and Islandiella specimens will ensure development of a better understanding of the ecological affinities of these key Arctic–North Atlantic taxa, consequently resulting in more accurate palaeoenvironmental reconstructions and geochemical data.


2021 ◽  
Vol 40 (1) ◽  
pp. 15-35 ◽  
Author(s):  
Romana Melis ◽  
Lucilla Capotondi ◽  
Fiorenza Torricella ◽  
Patrizia Ferretti ◽  
Andrea Geniram ◽  
...  

Abstract. During the Late Pleistocene–Holocene, the Ross Sea Ice Shelf exhibited strong spatial variability in relation to the atmospheric and oceanographic climatic variations. Despite being thoroughly investigated, the timing of the ice sheet retreat from the outer continental shelf since the Last Glacial Maximum (LGM) still remains controversial, mainly due to a lack of sediment cores with a robust chronostratigraphy. For this reason, the recent recovery of sediments containing a continuous occurrence of calcareous foraminifera provides the important opportunity to create a reliable age model and document the early deglacial phase in particular. Here we present a multiproxy study from a sediment core collected at the Hallett Ridge (1800 m of depth), where significant occurrences of calcareous planktonic and benthic foraminifera allow us to document the first evidence of the deglaciation after the LGM at about 20.2 ka. Our results suggest that the co-occurrence of large Neogloboquadrina pachyderma tests and abundant juvenile forms reflects the beginning of open-water conditions and coverage of seasonal sea ice. Our multiproxy approach based on diatoms, silicoflagellates, carbon and oxygen stable isotopes on N. pachyderma, sediment texture, and geochemistry indicates that abrupt warming occurred at approximately 17.8 ka, followed by a period of increasing biological productivity. During the Holocene, the exclusive dominance of agglutinated benthic foraminifera suggests that dissolution was the main controlling factor on calcareous test accumulation and preservation. Diatoms and silicoflagellates show that ocean conditions were variable during the middle Holocene and the beginning of the Neoglacial period at around 4 ka. In the Neoglacial, an increase in sand content testifies to a strengthening of bottom-water currents, supported by an increase in the abundance of the tycopelagic fossil diatom Paralia sulcata transported from the coastal regions, while an increase in ice-rafted debris suggests more glacial transport by icebergs.


2021 ◽  
Vol 40 (1) ◽  
pp. 1-13
Author(s):  
Maria Gajewska ◽  
Zofia Dubicka ◽  
Malcolm B. Hart

Abstract. Jurassic (Bathonian–Oxfordian) planktic foraminifera from the epicontinental strata of the Polish Basin have been investigated. The palaeoecology, palaeobiogeography, and biostratigraphical potential of the recorded taxa are discussed. Four species are recorded: Conoglobigerina helvetojurassica (Haeusler, 1881), Globuligerina balakhmatovae (Morozova, 1961), G. bathoniana (Pazdrowa, 1969), and G. oxfordiana (Grigelis, 1958). This assemblage is probably the most diverse of those described to date from the epicontinental areas of Europe. The recorded taxa are thought to represent three different ecological morphotypes. The clear relationship between transgressive–regressive facies and the palaeobiogeography of the recorded planktic foraminifera indicates a morphotype-related depth–distribution pattern in which small, simple, globular-chambered morphotypes occupied shallow waters whereas slightly larger, more complex forms, or those with hemispherical chambers, inhabited deeper and more open-water environments.


Export Citation Format

Share Document