Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Hereditas
Latest Publications


TOTAL DOCUMENTS

5029
(FIVE YEARS 98)

H-INDEX

76
(FIVE YEARS 2)

Published By Springer (Biomed Central Ltd.)

1601-5223, 0018-0661

Hereditas ◽  
2022 ◽  
Vol 159 (1) ◽  
Author(s):  
Bo Tu ◽  
Ling Ye ◽  
Qingsong Cao ◽  
Sisi Gong ◽  
Miaohua Jiang ◽  
...  

Abstract Background MicroRNAs (miRNAs) are involved in the prognosis of nasopharyngeal carcinoma (NPC). This study used clinical data and expression data of miRNAs to develop a prognostic survival signature for NPC patients to detect high-risk subject. Results We identified 160 differentially expressed miRNAs using RNA-Seq data from the GEO database. Cox regression model consisting of hsa-miR-26a, hsa-let-7e, hsa-miR-647, hsa-miR-30e, and hsa-miR-93 was constructed by the least absolute contraction and selection operator (LASSO) in the training set. All the patients were classified into high-risk or low-risk groups by the optimal cutoff value of the 5-miRNA signature risk score, and the two risk groups demonstrated significant different survival. The 5-miRNA signature showed high predictive and prognostic accuracies. The results were further confirmed in validation and external validation set. Results from multivariate Cox regression analysis validated 5-miRNA signature as an independent prognostic factor. A total of 13 target genes were predicted to be the target genes of miRNA target genes. Both PPI analysis and KEGG analysis networks were closely related to tumor signaling pathways. The prognostic model of mRNAs constructed using data from the dataset GSE102349 had higher AUCs of the target genes and higher immune infiltration scores of the low-risk groups. The mRNA prognostic model also performed well on the independent immunotherapy dataset Imvigor210. Conclusions This study constructed a novel 5-miRNA signature for prognostic prediction of the survival of NPC patients and may be useful for individualized treatment of NPC patients.


Hereditas ◽  
2022 ◽  
Vol 159 (1) ◽  
Author(s):  
Kirsten Hildebrandt ◽  
Dieter Kolb ◽  
Christine Klöppel ◽  
Petra Kaspar ◽  
Fabienne Wittling ◽  
...  

Abstract Background The homeobox gene homeobrain (hbn) is located in the 57B region together with two other homeobox genes, Drosophila Retinal homeobox (DRx) and orthopedia (otp). All three genes encode transcription factors with important functions in brain development. Hbn mutants are embryonic lethal and characterized by a reduction in the anterior protocerebrum, including the mushroom bodies, and a loss of the supraoesophageal brain commissure. Results In this study we conducted a detailed expression analysis of Hbn in later developmental stages. In the larval brain, Hbn is expressed in all type II lineages and the optic lobes, including the medulla and lobula plug. The gene is expressed in the cortex of the medulla and the lobula rim in the adult brain. We generated a new hbnKOGal4 enhancer trap strain by reintegrating Gal4 in the hbn locus through gene targeting, which reflects the complete hbn expression during development. Eight different enhancer-Gal4 strains covering 12 kb upstream of hbn, the two large introns and 5 kb downstream of the gene, were established and hbn expression was investigated. We characterized several enhancers that drive expression in specific areas of the brain throughout development, from embryo to the adulthood. Finally, we generated deletions of four of these enhancer regions through gene targeting and analysed their effects on the expression and function of hbn. Conclusion The complex expression of Hbn in the developing brain is regulated by several specific enhancers within the hbn locus. Each enhancer fragment drives hbn expression in several specific cell lineages, and with largely overlapping patterns, suggesting the presence of shadow enhancers and enhancer redundancy. Specific enhancer deletion strains generated by gene targeting display developmental defects in the brain. This analysis opens an avenue for a deeper analysis of hbn regulatory elements in the future.


Hereditas ◽  
2022 ◽  
Vol 159 (1) ◽  
Author(s):  
Li Xin Su ◽  
Yi Sun ◽  
Zhenfeng Wang ◽  
Deming Wang ◽  
Xitao Yang ◽  
...  

AbstractPIK3CA-related overgrowth spectrum (PROS) is a series of congenital, sporadic disorders that are associated with segmental overgrowth phenotypes and postzygotic, somatic gene mutations in the PIK3CA-ATK-mTOR pathway. The variability and overlapping phenotypes between PROS and other complex vascular malformations make the differential diagnosis confusing and challenging. PROS should be considered for the differential diagnosis with other complex vascular malformations and syndromes with a tissue overgrowth phenotype, such as Parkes-Weber syndrome (PWS).Herein, we diagnosed one unique clinically challenging case manifested as capillary malformation (CM), limb overgrowth, as well as increased skin temperature and peripheral venous dilatation of lower limb that indicated a potential fast-flow lesion. The patient was initially diagnosed with PWS. Contrary to the previous diagnosis, based on further MR imaging and digital subtraction angiography (DSA), which ruled out the existence of AVMs and AVFs, and molecular analysis with targeted next-generation sequencing (NGS) revealing a somatic PIK3CA mutation, we ultimately diagnosed that the patient had a unique form of PROS simulating PWS phenotypes. We suggest that it is important to propose the differential diagnosis of PWS and PROS, two diseases that share a common overgrowth phenotype. We recommended radiological diagnosis such as MRI, CT and DSA as well as further molecular diagnosis to provide more information for the assessment of vascular lesions and to further guide clinical treatment strategies.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Yuebin Wang ◽  
Huike Yang ◽  
Xian Su ◽  
Anqiang Cao ◽  
Feng Chen ◽  
...  

Abstract Background Asthma is a common chronic respiratory disease that influences 300 million people all over the world. However, the pathogenesis of asthma has not been fully elucidated. It has been reported that transforming growth factor-β (TGF-β) can activate myofibroblasts. Moreover, the fibroblast to myofibroblast transformation (FMT) can be triggered by TGF-β, which is a major mediator of subepithelial fibrosis. Secreted modular calcium-binding protein 2 (SMOC2) is a member of cysteine (SPARC) family and is involved in the progression of multiple diseases. However, its role in asthma remains poorly understood. RT-qPCR evaluated the expression of SMOC2. Bromodeoxyuridine assay and wound-healing assay detected the proliferation and migration of lung fibroblasts, respectively. IF staining was performed to assess the expression of α-smooth muscle actin (α-SMA). Western blot analysis detected the levels of proteins. Flow cytometry was utilized for determination of the number of myofibroblasts. Results We found the expression of SMOC2 was upregulated by the treatment of TGF-β1 in lung fibroblasts. In addition, SMOC2 promoted the proliferation and migration of lung fibroblasts. More importantly, SMOC2 accelerated FMT of lung fibroblasts. Furthermore, SMOC2 was verified to control the activation of AKT and ERK. Rescue assays showed that the inhibition of AKT and ERK pathway reversed the promoting effect of SMOC2 overexpression on proliferation, migration and FMT in lung fibroblasts. Conclusions This work demonstrated that SMOC2 modulated TGF-β1-induced proliferation, migration and FMT in lung fibroblasts and may promote asthma, which potentially provided a novel therapeutic target for the management of asthma.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Wei Zhou ◽  
Luan Chen ◽  
Hao Wu ◽  
Ting Wang ◽  
Gang Ma ◽  
...  

Abstract Background Indian Hedgehog (IHH), an important cell signaling protein, plays a key regulatory role in development of cartilage and chondrogenesis. Earlier studies have shown that heterozygous missense mutations in IHH gene may cause brachydactyly type A1 (BDA1), an autosomal dominant inheritance disease characterized by apparent shortness or absence of the middle phalanges of all digits. MicroRNAs (miRNAs) have been found to be significant post-transcriptional regulators of gene expression and significantly influence the process of bone-development. Therefore, it is possible that miRNAs are involved in the mechanism underlying the development of BDA1. However, the relationship between miRNAs and the pathogenesis of BDA1 remains unclear. Methods In this study, we used microarray-based miRNA profiling to investigate the role of miRNAs in BDA1 by characterization of differentially expressed miRNAs in C3H10T1/2 cell line induced by wild type (WT) and p.E95K mutant (MT) IHH signaling. Results Our results identified 6 differentially expressed miRNAs between WT and control (CT) group and 5 differentially expressed miRNAs between MT and CT groups. In particular, miR-135a-1-3p was found to be a significantly differentially expressed miRNA between WT and CT group. Results of dual-luciferase reporter gene experiment successfully discovered Hoxd10 was one of the target gene of miR-135a-1-3p. Additionally, our pathway analysis revealed that the targets of these miRNAs of interest were highly involved with Runx1/2, Notch and collagen-related pathways. Conclusions Taken together, our findings provided important clue for future study of the process of miRNA-regulation in IHH signaling and novel insights into the regulatory role of miRNA in pathogenesis of BDA1.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Hong Lin Zu ◽  
Hong Wei Liu ◽  
Hai Yang Wang

Abstract Background The diameter of the abdominal aortic aneurysm (AAA) is the most commonly used parameter for the prediction of occurrence of AAA rupture. However, the most vulnerable region of the aortic wall may be different from the most dilated region of AAA under pressure. The present study is the first to use weighted gene coexpression network analysis (WGCNA) to detect the coexpressed genes that result in regional weakening of the aortic wall. Methods The GSE165470 raw microarray dataset was used in the present study. Differentially expressed genes (DEGs) were filtered using the “limma” R package. DEGs were assessed by Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. WGCNA was used to construct the coexpression networks in the samples with regional weakening of the AAA wall and in the control group to detect the gene modules. The hub genes were defined in the significant functional modules, and a hub differentially expressed gene (hDEG) coexpression network was constructed with the highest confidence based on protein–protein interactions (PPIs). Molecular compound detection (MCODE) was used to identify crucial genes in the hDEG coexpression network. Crucial genes in the hDEG coexpression network were validated using the GSE7084 and GSE57691 microarray gene expression datasets. Result A total of 350 DEGs were identified, including 62 upregulated and 288 downregulated DEGs. The pathways were involved in immune responses, vascular smooth muscle contraction and cell–matrix adhesion of DEGs in the samples with regional weakening in AAA. Antiquewhite3 was the most significant module and was used to identify downregulated hDEGs based on the result of the most significant modules negatively related to the trait of weakened aneurysm walls. Seven crucial genes were identified and validated: ACTG2, CALD1, LMOD1, MYH11, MYL9, MYLK, and TPM2. These crucial genes were associated with the mechanisms of AAA progression. Conclusion We identified crucial genes that may play a significant role in weakening of the AAA wall and may be potential targets for medical therapies and diagnostic biomarkers. Further studies are required to more comprehensively elucidate the functions of crucial genes in the pathogenesis of regional weakening in AAA.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Yimin Sun ◽  
Yong Gao ◽  
Yuxi Zhou ◽  
Yulong Zhou ◽  
Ying Zhang ◽  
...  

Abstract Background Developmental stuttering is the most common form of stuttering without apparent neurogenic or psychogenic impairment. Recently, whole-exome sequencing (WES) has been suggested to be a promising approach to study Mendelian disorders. Methods Here, we describe an application of WES to identify a gene potentially responsible for persistent developmental stuttering (PDS) by sequencing DNA samples from 10 independent PDS families and 11 sporadic cases. Sanger sequencing was performed for verification with samples obtained from 73 additional patients with sporadic cases. Results We first searched for cosegregating variants/candidate genes in a Chinese family (Family 0) by sequencing DNA obtained from 3 affected members and 3 controls. Next, we sequenced DNA samples obtained from 9 additional Chinese families (Families 1-9) with stuttering to verify the identified candidate genes. Intriguingly, we found that two missense variants (Leu552Pro and Lys428Gln) of interferon-alpha/beta receptor 1 (IFNAR1) cosegregated with stuttering in three independent families (Families 0, 5 and 9). Moreover, we found two additional mutations (Gly301Glu and Pro335del) in the IFNAR1 gene in 4 patients with sporadic cases by using WES or Sanger sequencing. Further receptor mutagenesis and cell signaling studies revealed that these IFNAR1 variants may impair the activity of type I IFN signaling. Conclusion Our data indicate that IFNAR1 might be a potential pathogenic gene of PDS in the Chinese population.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Yujie Han ◽  
Lili Kang ◽  
Xianghong Liu ◽  
Yuanhua Zhuang ◽  
Xiao Chen ◽  
...  

Abstract Background Septic shock is the most severe complication of sepsis, and is a major cause of childhood mortality, constituting a heavy public health burden. Methods We analyzed the gene expression profiles of septic shock and control samples from the Gene Expression Omnibus (GEO). Four differentially expressed genes (DEGs) from survivor and control groups, non-survivor and control groups, and survivor and non-survivor groups were selected. We used data about these genes to establish a logistic regression model for predicting the survival of septic shock patients. Results Leave-one-out cross validation and receiver operating characteristic (ROC) analysis indicated that this model had good accuracy. Differential expression and Gene Set Enrichment Analysis (GSEA) between septic shock patients stratified by prediction score indicated that the systemic lupus erythematosus pathway was activated, while the limonene and pinene degradation pathways were inactivated in the high score group. Conclusions Our study provides a novel approach for the prediction of the severity of pathology in septic shock patients, which are significant for personalized treatment as well as prognostic assessment.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Yi Shi ◽  
Ji-Bin Liu ◽  
Jing Deng ◽  
Da-Zhi Zou ◽  
Jian-Jun Wu ◽  
...  

AbstractHepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide due to its high degree of malignancy, high incidence, and low survival rate. However, the underlying mechanisms of hepatocarcinogenesis remain unclear. Long non coding RNA (lncRNA) has been shown as a novel type of RNA. lncRNA by acting as ceRNA can participate in various biological processes of HCC cells, such as tumor cell proliferation, migration, invasion, apoptosis and drug resistance by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can predict the efficacy of treatment strategies for HCC and serve as a potential target for the diagnosis and treatment of HCC. Therefore, lncRNA serving as ceRNA may become a vital candidate biomarker for clinical diagnosis and treatment. In this review, the epidemiology of HCC, including morbidity, mortality, regional distribution, risk factors, and current treatment advances, was briefly discussed, and some biological functions of lncRNA in HCC were summarized with emphasis on the molecular mechanism and clinical application of lncRNA-mediated ceRNA regulatory network in HCC. This paper can contribute to the better understanding of the mechanism of the influence of lncRNA-mediated ceRNA networks (ceRNETs) on HCC and provide directions and strategies for future studies.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Christine Klöppel ◽  
Kirsten Hildebrandt ◽  
Dieter Kolb ◽  
Nora Fürst ◽  
Isabelle Bley ◽  
...  

Abstract Background The Drosophila brain is an ideal model system to study stem cells, here called neuroblasts, and the generation of neural lineages. Many transcriptional activators are involved in formation of the brain during the development of Drosophila melanogaster. The transcription factor Drosophila Retinal homeobox (DRx), a member of the 57B homeobox gene cluster, is also one of these factors for brain development. Results In this study a detailed expression analysis of DRx in different developmental stages was conducted. We show that DRx is expressed in the embryonic brain in the protocerebrum, in the larval brain in the DM and DL lineages, the medulla and the lobula complex and in the central complex of the adult brain. We generated a DRx enhancer trap strain by gene targeting and reintegration of Gal4, which mimics the endogenous expression of DRx. With the help of eight existing enhancer-Gal4 strains and one made by our group, we mapped various enhancers necessary for the expression of DRx during all stages of brain development from the embryo to the adult. We made an analysis of some larger enhancer regions by gene targeting. Deletion of three of these enhancers showing the most prominent expression patterns in the brain resulted in specific temporal and spatial loss of DRx expression in defined brain structures. Conclusion Our data show that DRx is expressed in specific neuroblasts and defined neural lineages and suggest that DRx is another important factor for Drosophila brain development.


Export Citation Format

Share Document