Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

CHIMIA International Journal for Chemistry
Latest Publications


TOTAL DOCUMENTS

3078
(FIVE YEARS 342)

H-INDEX

45
(FIVE YEARS 3)

Published By Swiss Chemical Society

0009-4293

2021 ◽  
Vol 75 (12) ◽  
pp. 1037-1044
Author(s):  
Chiara Borsari ◽  
Matthias P. Wymann

Phosphoinositide 3-kinase (PI3K) plays a key role in a plethora of physiologic processes and controls cell growth, metabolism, immunity, cardiovascular and neurological function, and more. The discovery of wort-mannin as the first potent PI3K inhibitor (PI3Ki) in the 1990s provided rapid identification of PI3K-dependent processes, which drove the discovery of the PI3K/protein kinase B (PKB/Akt)/target of rapamycin (mTOR) pathway. Genetic mouse models and first PI3K isoform-specific inhibitors pinpointed putative therapeutic applications. The recognition of PI3K as target for cancer therapy drove subsequently drug development. Here we provide a brief journey through the emerging roles of PI3K to the development of preclinical and clinical PI3Ki candidates.


2021 ◽  
Vol 75 (12) ◽  
pp. 1017-1021
Author(s):  
Robbie Loewith ◽  
Aurélien Roux ◽  
Olivier Pertz

To understand the complex biochemistry and biophysics of biological systems, one needs to be able to monitor local concentrations of molecules, physical properties of macromolecular assemblies and activation status of signaling pathways, in real time, within single cells, and at high spatio-temporal resolution. Here we look at the tools that have been / are being / need to be provided by chemical biology to address these challenges. In particular, we highlight the utility of molecular probes that help to better measure mechanical forces and flux through key signalling pathways. Chemical biology can be used to both build biosensors to visualize, but also actuators to perturb biological processes. An emergent theme is the possibility to multiplex measurements of multiple cellular processes. Advances in microscopy automation now allow us to acquire datasets for 1000's of cells. This produces high dimensional datasets that require computer vision approaches that automate image analysis. The high dimensionality of these datasets are often not immediately accessible to human intuition, and, similarly to 'omics technologies, require statistical approaches for their exploitation. The field of biosensor imaging is therefore experiencing a multidisciplinary transition that will enable it to realize its full potential as a tool to provide a deeper appreciation of cell physiology.


2021 ◽  
Vol 75 (12) ◽  
pp. 1031-1036
Author(s):  
Sriraksha Srinivasan ◽  
Stefano Vanni

Association of proteins with cellular membranes is critical for signaling and membrane trafficking processes. Many peripheral lipid-binding domains have been identified in the last few decades and have been investigated for their specific lipid-sensing properties using traditional in vivo and in vitro studies. However, several knowledge gaps remain owing to intrinsic limitations of these methodologies. Thus, novel approaches are necessary to further our understanding in lipid–protein biology. This review briefly discusses lipid-binding domains that act as specific lipid biosensors and provides a broad perspective on the computational approaches such as molecular dynamics (MD) simulations and machine learning (ML)-based techniques that can be used to study protein–membrane interactions. We also highlight the need for de novo design of proteins that elicit specific lipid-binding properties.


2021 ◽  
Vol 75 (12) ◽  
pp. 1045-1046
Author(s):  
Lucia Robustini ◽  
Valentina Marchini ◽  
Lauriane Pillet ◽  
David Lim ◽  
Francesca Paradisi

2021 ◽  
Vol 75 (12) ◽  
pp. 1058-1065
Author(s):  
Lauriane Pillet ◽  
Remy Dufresne ◽  
Simon Crelier

Contaminants deriving from human activities represent a constantly growing threat to our environment and have a direct impact on plant and animal health. To alleviate this ecological imbalance, biocatalysis offers a green and sustainable alternative to conventional chemical processes. Due to their broad specificity, laccases are enzymes possessing excellent potential for synthetic biotransformations in various fields as well as for the degradation of organic contaminants. Herein, we produced laccases in submerged cultures of P. ostreatus and T. versicolor in three different media. The fungi/medium combination leading to the highest enzymatic activity was malt extract (2%) + yeast extract (3%) + glucose (0.8%). Laccase production was further increased by supplementing this medium with different concentrations of Cu2+, which also provided a better understanding of the induction effect. Additionally, we disclose preliminary results on the interaction of laccases with mediators (ABTS and violuric acid - VA) for two main applications: lignin depolymerisation with guaiacylglycerol-β-guaiacyl ether (GBG) as lignin model and micropollutant degradation with Remazol Brilliant Blue (RBB) as enzymatic bioremediation model. Promising results were achieved using VA to increase depolymerization of GBG dimer and to enhance RBB decolorisation.


2021 ◽  
Vol 75 (12) ◽  
pp. 1071-1072
Author(s):  
Hans P. Lüthi ◽  
Marie Francine Lagadec ◽  
Lauren Gamp ◽  
Céline Wittwer ◽  
Bill Morandi ◽  
...  

2021 ◽  
Vol 75 (12) ◽  
pp. 1012-1016
Author(s):  
Clémence Simon ◽  
Suihan Feng ◽  
Howard Riezman

Lipids are important cellular components providing many essential functions. To fulfill these various functions evolution has selected for a diverse set of lipids and this diversity is seen at the organismal, cellular and subcellular level. Understanding how cells maintain this complex lipid organization is a very challenging problem, which for lipids, is not easily addressed using biochemical and genetic techniques. Therefore, chemical tools have an important role to play in our quest to understand the complexities of lipid metabolism. Here we discuss new chemical tools to study lipids, their distribution and metabolism with increased spatial and temporal resolution.


2021 ◽  
Vol 75 (12) ◽  
pp. 1047-1047
Author(s):  
Thi Kieu Tiên Do ◽  
Eike Reich

2021 ◽  
Vol 75 (12) ◽  
pp. 1026-1030
Author(s):  
Auxiliadora Aguilera-Romero ◽  
Manuel Muñiz

Lipid and protein diversity provides structural and functional identity to the membrane compartments that define the eukaryotic cell. This compositional heterogeneity is maintained by the secretory pathway, which feeds newly synthesized proteins and lipids to the endomembrane systems. The precise sorting of lipids and proteins through the pathway guarantees the achievement of their correct delivery. Although proteins have been shown to be key for sorting mechanisms, whether and how lipids contribute to this process is still an open discussion. Our laboratory, in collaboration with other groups, has recently addressed the long-postulated role of membrane lipids in protein sorting in the secretory pathway, by investigating in yeast how a special class of lipid-linked cell surface proteins are differentially exported from the endoplasmic reticulum. Here we comment on this interdisciplinary study that highlights the role of lipid diversity and the importance of protein-lipid interactions in sorting processes at the cell membrane.


2021 ◽  
Vol 75 (12) ◽  
pp. 1051-1051
Author(s):  
Agnieszka Ladosz ◽  
Benjamin Martin

Export Citation Format

Share Document