Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Ms. Donohue’s Advanced Placement Biology Summer                                     Assignments

Congratulations on being accepted into the Advanced Placement Biology Program! AP Biology is a rigorous and rewarding
course exploring the deepest mysteries of life on Earth. It is imperative that we embark on our journey of knowledge in
the summer in order to cover all the topics that will appear on the AP Biology Exam in May of 2012. Your hard work and
dedication this summer will unquestionably pave the road for a successful year in Hialeah Gardens’ 2011-2012 AP Biology
Course!


Read the following chapters, outline chapters in Campbell’s 7th Edition Biology textbook and complete the study guide
questions posted on the AP Biology Blog (http://hghsAPbiology.blogspot.com) by 11 pm on the assigned dates (Sunday
Nights):

Chapter   1 & 2 (6-19)
Chapter   3 & 50 (6-26)
Chapter   51 (6-3)
Chapter   52 (7-10)
Chapter   53 (7-24)
Chapter   54 (8-7)
Chapter   55 (8-21)


***Outlines must be ORIGINAL and hand written in a 5-subject spiral notebook that will serve as your “NOTES”
notebook during the school year…must use Roman Numerals and Letters (see website
http://www.lavc.edu/Library/outline.htm for pointers)…include relevant diagrams, pictures, tables etc…

***Answers to study guide questions need to be emailed to mdonohue@dadeschools.net by the assigned dates! The
subject line of your email should look like the following:
                      “AP Biology Chapter __#__ Study Guide by YOUR NAME (first and last)”
You may submit outlines study guides EARLIER than the assigned date but NOT later! Also, be sure to print out AND
save a copy. On the first meeting of class you will be submitting a hardcopy of all study guide questions and chapter
outlines

The second day of class, there will be a cumulative test on the assigned summer chapters (1, 2, 3, 50-55) in class. This
will be 25% of your first quarter grade.

Feel free to email me or tweet me with any questions. I will try and respond as soon as possible.

Email: mdonohue@dadeschools.net
Twitter Name: MissD_BioRox
Chapter 1 Study Guide Questions


     Exploring Life on its Many Levels

 1. Briefly describe the unifying themes that characterize the biological sciences.

 2. Diagram the hierarchy of structural levels in biological organization.

 3. Explain how the properties of life emerge from complex organization.

 4. Describe the two major dynamic processes of any ecosystem.

 5. Distinguish between prokaryotic and eukaryotic cells.

 6. Describe the basic structure and function of DNA.

 7. Describe the dilemma of reductionism.

 8. Discuss the goals and activities of systems biology. List the three research developments that have advanced systems biology.

 9. Explain the importance of regulatory mechanisms in living things. Distinguish between positive and negative feedback.



     Evolution, Unity, and Diversity

10. Distinguish among the three domains of life. List and distinguish among the three kingdoms of multicellular, eukaryotic life.

11. Explain the phrase: “life‟s dual nature of unity and diversity”.

12. Describe the observations and inferences that led Charles Darwin to his theory of evolution by natural selection.

13. Explain why diagrams of evolutionary relationships have a treelike form.



     The Process of Science

14. Distinguish between discovery science and hypothesis-based science. Explain why both types of exploration contribute to our understanding of
    nature.

15. Distinguish between quantitative and qualitative data.

16. Distinguish between inductive and deductive reasoning.

17. Explain why hypotheses must be testable and falsifiable but are not provable.

18. Describe what is meant by a controlled experiment.

19. Distinguish between the everyday meaning of the term „theory‟ and its meaning to scientists.

20. Explain how science is influenced by social and cultural factors.

21. Distinguish between science and technology. Explain how science and technology are interdependent.
Chapter 2 Study Guide Questions

Elements and Compounds

 1. Distinguish between an element and a compound.

 2. Identify the four elements that make up 96% of living matter.

 3. Define the term trace element and give an example.



     Atoms and Molecules

 4. Draw and label a simplified model of an atom. Explain how this model simplifies our understanding of atomic structure.

 5. Distinguish between each of the following pairs of terms:
    a. neutron and proton
    b. atomic number and mass number
    c. atomic weight and mass number

 6. Explain how the atomic number and mass number of an atom can be used to determine the number of neutrons.

 7. Explain how two isotopes of an element are similar. Explain how they are different.

 8. Describe two biological applications that use radioactive isotopes.

 9. Define the terms energy and potential energy. Explain why electrons in the first electron shell have less potential energy than electrons in
    higher electron shells.

10. Distinguish among nonpolar covalent, polar covalent and ionic bonds.

11. Explain why strong covalent bonds and weak bonds are both essential in living organisms.

12. Distinguish between hydrogen bonds and van der Waals interactions.

13. Give an example that illustrates how a molecule‟s shape can determine its biological function.

14. Explain what is meant by a chemical equilibrium.
Chapter 3 Study Guide Questions

The Properties of Water

 1. With the use of a diagram or diagrams, explain why water molecules are:
    a. polar
    b. capable of hydrogen bonding with 4 neighboring water molecules

 2. List four characteristics of water that are emergent properties resulting from hydrogen bonding.

 3. Define cohesion and adhesion. Explain how water‟s cohesion and adhesion contribute to the movement of water from the roots to the leaves
    of a tree.

 4. Distinguish between heat and temperature, using examples to clarify your definitions.

 5. Explain the following observations by referring to the properties of water:
      Coastal areas have milder climates than adjacent inland areas.
      Ocean temperatures fluctuate much less than air temperatures on land.
      Insects like water striders can walk on the surface of a pond without breaking the surface.
      If you slightly overfill a water glass, the water will form a convex surface above the top of the glass.
      If you place a paper towel so that it touches spilled water, the towel will draw in the water.
      Ice floats on water.
      Humans sweat and dogs pant to cool themselves on hot days.

 6. Distinguish among a solute, a solvent, and a solution.

 7. Distinguish between hydrophobic and hydrophilic substances.

 8. Explain how you would make up a one molar (1M) solution of ethyl alcohol.



     The Dissociation of Water Molecules

 9. Name the products of the dissociation of water and give their concentration in pure water.

10. Define acid, base, and pH.

11. Explain how acids and bases may directly or indirectly alter the hydrogen ion concentration of a solution.

12. Using the bicarbonate buffer system as an example, explain how buffers work.

13. Briefly explain the causes and effects of acid precipitation.
Chapter 50 Study Guide Questions

The Scope of Ecology

 1. Define ecology. Identify the two features of organisms studied by ecologists.

 2. Describe the relationship between ecology and evolutionary biology.

 3. Distinguish between abiotic and biotic components of the environment.

 4. Distinguish among organismal ecology, population ecology, community ecology, ecosystem ecology, and landscape ecology.

 5. Clarify the difference between ecology and environmentalism.



     Interactions Between Organisms and the Environment Affect the Distribution of Species

 6. Define biogeography.

 7. Describe the questions that might be asked in a study addressing the limits of the geographic distribution of a particular species.

 8. Describe the problems caused by introduced species and illustrate with a specific example.

 9. Explain how habitat selection may limit distribution of a species within its range of suitable habitats.

10. Describe, with examples, how biotic and abiotic factors may affect the distribution of organisms.

11. List the four abiotic factors that are the most important components of climate.

12. Distinguish between macroclimate and microclimate patterns.

13. Provide an example of a microclimate.

14. Explain, with examples, how a body of water and a mountain range might affect regional climatic conditions.

15. Describe how an ecologist might predict the effect of global warming on distribution of a tree species.

16. Name three ways in which marine biomes affect the biosphere.



     Aquatic and Terrestrial Biomes

17. Describe the characteristics of the major aquatic biomes: lakes, wetlands, streams, rivers, estuaries, intertidal biomes, oceanic pelagic biomes,
    coral reefs, and marine benthic biomes.

18. Define the following characteristics of lakes: seasonal turnover, thermal stratification, thermocline, photic zone.

19. Explain why the following statement is false: “All communities on Earth are based on primary producers that capture light energy by
    photosynthesis.”

20. Describe the characteristics of the major terrestrial biomes: tropical forest, desert, savanna, chaparral, temperate grassland, coniferous forest,
    temperate broadleaf forest, and tundra.

21. Give an example of a biome characterized by periodic disturbance.
Chapter 51 Study Guide Questions
Introduction to Behavior and Behavioral Ecology

 1. Define behavior.

 2. Distinguish between proximate and ultimate questions about behavior. Ask a proximate question and an ultimate question about bird song.

 3. Explain how the classical discipline of ethology led to the modern study of behavioral ecology.

 4. Define fixed action patterns and give an example.

 5. Define imprinting. Suggest a proximate cause and an ultimate cause for imprinting in young geese.



     Many Behaviors Have a Genetic Component

 6. Explain how genes and environment contribute to behavior. Explain what is unique about innate behavior.

 7. Distinguish between kinesis and taxis.

 8. Distinguish between signal and pheromone.

 9. Explain how Berthold‟s research demonstrated a genetic basis for blackcap migration.

10. Describe Insel‟s research on the genetic and physiological controls on parental behavior of prairie voles. Describe Bester-Meredith and Marler‟s
    research on the influence of social behavior on parental behavior of California mice.



     Learning

11. Explain how habituation may influence behavior.

12. Describe Tinbergen‟s classic experiment on spatial learning in digger wasps.

13. Distinguish between landmarks and cognitive maps.

14. Describe how associative learning might help a predator to avoid toxic prey.

15. Distinguish between classical conditioning and operant conditioning.

16. Describe an experiment that demonstrates problem solving in nonhuman animals.



     Behavioral Traits Can Evolve by Natural Selection

17. Explain how Hedrick and Riechert‟s experiments demonstrated that behavioral differences between populations might be the product of natural
    selection.

18. Use an example to show how researchers can demonstrate the evolution of behavior in laboratory experiments.

19. Explain optimal foraging theory.

20. Explain how behavioral ecologists carry out cost-benefit analyses to determine how an animal should forage optimally. Explain how Zach
    demonstrated that crows feed optimally on whelks.

21. Explain how predation risk may affect the foraging behavior of a prey species.

22. Define and distinguish among promiscuous, monogamous, and polygamous mating relationships. Define and distinguish between polygyny and
    polyandry.

23. Describe how the certainty of paternity influences the development of mating systems.

24. Explain why males are more likely than females to provide parental care in fishes.

25. Suggest an ultimate explanation for a female stalk-eyed fly‟s preference for mates with relatively long eyestalks.

26. Agonistic behavior in males is often a ritualized contest rather than combat. Suggest an ultimate explanation for this.

27. Explain how game theory may be used to evaluate alternative behavioral strategies.

28. Define inclusive fitness and reciprocal altruism. Discuss conditions that would favor the evolution of altruistic behavior.

29. Relate the coefficient of relatedness to the concept of altruism.

30. Define Hamilton’s rule and the concept of kin selection.



     Social Learning and Sociobiology

31. Define social learning and culture.

32. Explain why mate choice copying by a female may increase her fitness.
    33. State the main premise of sociology.
Chapter 52 Study Guide
Characteristics of Populations

  1. Distinguish between density and dispersion of a population.

  2. Explain how ecologists may estimate the density of a species.

  3. Describe conditions that may result in clumped dispersion, uniform dispersion, and random dispersion of individuals in a population.

  4. Explain how a life table is constructed.

  5. Distinguish between a life table and a reproductive table.

  6. Describe the characteristics of populations that exhibit Type I, Type II, and Type III survivorship curves.



     Life Histories

  7. Define and distinguish between semelparity and iteroparity. Explain what factors may favor the evolution of each life history strategy.

  8. Explain, with examples, how limited resources and trade-offs may affect life histories.



     Population Growth

  9. Compare the exponential model of population growth with the logistic model.

10. Explain how an environment‟s carrying capacity affects the per capita rate of increase of a population.

11. Explain the meaning of each of the following terms in the logistic model of population growth:
    a. rmax
    b. K – N
    c. (K – N)/K

12. Distinguish between r-selected populations and K-selected populations.



     Population-Limiting Factors

13. Explain how density-dependent factors affect population growth.

14. Explain, with examples, how biotic and abiotic factors may work together to control a population‟s growth.

15. Describe boom-and-bust population cycles, explaining possible causes of lynx/hare fluctuations.



     Human Population Growth

16. Describe the history of human population growth.

17. Define the demographic transition.

18. Compare the age structures of Italy, Afghanistan, and the United States. Describe the possible consequences for each country.

19. Describe the problems associated with estimating Earth‟s carrying capacity for the human species.
Chapter 53 Study Guide
Interspecific Interactions and Community Structure

 1. List the categories of interspecific interactions and explain how each interaction may affect the population densities of the two species involved.

 2. State the competitive exclusion principle.

 3. Define an ecological niche and restate the competitive exclusion principle using the niche concept.

 4. Distinguish between fundamental and realized niche.

 5. Explain how interspecific competition may lead to resource partitioning.

 6. Define and compare predation, herbivory, and parasitism.

 7. Give specific examples of adaptations of predators and prey.

 8. Explain how cryptic coloration and warning coloration may aid an animal in avoiding predators.

 9. Distinguish between Batesian mimicry and MŸllerian mimicry.

10. Describe how predators may use mimicry to obtain prey.

11. Distinguish among endoparasites, ectoparasites, and parisitoids.

12. Distinguish among parasitism, mutualism, and commensalism.

13. Explain the relationship between species richness and relative abundance and explain how both contribute to species diversity.

14. Distinguish between a food chain and a food web.

15. Describe two ways to simplify food webs.

16. Summarize two hypotheses that explain why food chains are relatively short.

17. Explain how dominant and keystone species exert strong control on community structure. Describe an example of each.

18. Describe and distinguish between the bottom-up and top-down models of community organization. Describe possible features of a model that
    is intermediate between these two extremes.



     Disturbance and Community Structure

19. Define stability and disturbance.

20. Provide examples of how disturbance may increase or decrease species diversity.

21. Give examples of humans as widespread agents of disturbance.

22. Distinguish between primary and secondary succession.

23. Describe how species that arrive early in succession may facilitate, inhibit, or tolerate later arrivals.

24. Explain why species richness declines along an equatorial-polar gradient.

25. Explain the significance of measures of evapotranspiration to species richness.



     Biogeographic Factors Affect Community Biodiversity

26. Define the species-area curve.

27. Explain how species richness on islands varies according to island size and distance from the mainland.

28. Define and contrast the following pairs of hypotheses:
    a. interactive hypothesis versus individualistic hypothesis
    b. rivet model versus redundancy model
Chapter 54 Study Guide
Ecosystems, Energy, and Matter

 1. Describe the fundamental relationship between autotrophs and heterotrophs in an ecosystem.

 2. Explain how the first and second laws of thermodynamics apply to ecosystems.

 3. Explain how decomposition connects all trophic levels in an ecosystem.



     Primary Production in Ecosystems

 4. Explain why the amount of energy used in photosynthesis is so much less than the amount of solar energy that reaches Earth.

 5. Define and compare gross primary production and net primary production.

 6. Define and compare net primary production and standing crop.

 7. Compare primary productivity in specific marine, freshwater, and terrestrial ecosystems.



     Secondary Production in Ecosystems

 8. Explain why energy is said to flow rather than cycle within ecosystems.

 9. Explain what factors may limit production in aquatic ecosystems.

10. Describe an experiment that provided evidence that iron availability limits oceanic primary production in some regions. Explain how iron
    availability is related to nitrogen availability in these regions.

11. Explain why areas of upwelling in the ocean have exceptionally high levels of primary production.

12. Distinguish between each of the following pairs of terms:
    a. primary and secondary production
    b. production efficiency and trophic efficiency

13. Explain why the production efficiency of a human is much less than the production efficiency of a mosquito.

14. Distinguish among pyramids of net production, pyramids of biomass, and pyramids of numbers.

15. Explain why aquatic ecosystems may have inverted biomass pyramids.

16. Explain why worldwide agriculture could feed more people if all humans consumed only plant material.

17. Explain the green-world hypothesis. Describe five factors that may act to keep herbivores in check.



     The Cycling of Chemical Elements in Ecosystems

18. Describe the four nutrient reservoirs and the processes that transfer the elements between reservoirs.

19. Name the main processes driving the water cycle.

20. Name the major reservoirs of carbon.

21. Describe the nitrogen cycle and explain the importance of nitrogen fixation to all living organisms. Name three other key bacterial processes in
    the nitrogen cycle.

22. Describe the phosphorus cycle and explain how phosphorus is recycled locally in most ecosystems.

23. Explain how decomposition affects the rate of nutrient cycling in ecosystems.

24. Describe how net primary production and the rate of decomposition vary with actual evapotranspiration.

25. Describe the experiments at Hubbard Brook that revealed the key role that plants play in regulating nutrient cycles.



     Human Impact on Ecosystems and the Biosphere

26. Describe how agricultural practices can interfere with nitrogen cycling.

27. Explain how “cultural eutrophication” can alter freshwater ecosystems.

28. Describe the causes and consequences of acid precipitation.

29. Explain why toxic compounds usually have the greatest effect on top-level carnivores.

30. Describe how increased atmospheric concentrations of carbon dioxide could affect Earth.

31. Describe the causes and consequences of ozone depletion.
Chapter 55 Study Guide
The Biodiversity Crisis

  1. Distinguish between conservation biology and restoration biology.

  2. Describe the three levels of biodiversity.

  3. Explain why biodiversity at all levels is vital to human welfare.

  4. List the four major threats to biodiversity and give an example of each.



      Conservation at the Population and Species Levels

  5. Define and compare the small-population approach and thedeclining-population approach.

  6. Explain how an extinction vortex can lead to the extinction of a small population. Describe how a greater prairie chicken population was
     rescued from an extinction vortex.

  7. Describe the basic steps that are used to analyze declining populations and determine possible interventions in the declining-population
     approach. Describe the case of the red-cockaded woodpecker to illustrate this approach.

  8. Describe the conflicting demands that accompany species conservation.



      Conservation at the Community, Ecosystem, and Landscape Levels

  9. Explain how edges and corridors can strongly influence landscape biodiversity.

10. Define biodiversity hot spots and explain why they are important.

11. Explain why natural reserves must be functional parts of landscapes.

12. Define zoned reserves and explain why they are important.

13. Define restoration ecology and describe its goals.

14. Explain the importance of bioremediation and biological augmentation of ecosystem processes in restoration efforts.

15. Describe the process of adaptive management.

16. Describe the concept of sustainable development.

17. Explain the goals of the Sustainable Biosphere Initiative.

18. Define biophilia and explain why the concept gives some biologists hope.

More Related Content

2011 2012 hghs ap biology summer packet

  • 1. Ms. Donohue’s Advanced Placement Biology Summer Assignments Congratulations on being accepted into the Advanced Placement Biology Program! AP Biology is a rigorous and rewarding course exploring the deepest mysteries of life on Earth. It is imperative that we embark on our journey of knowledge in the summer in order to cover all the topics that will appear on the AP Biology Exam in May of 2012. Your hard work and dedication this summer will unquestionably pave the road for a successful year in Hialeah Gardens’ 2011-2012 AP Biology Course! Read the following chapters, outline chapters in Campbell’s 7th Edition Biology textbook and complete the study guide questions posted on the AP Biology Blog (http://hghsAPbiology.blogspot.com) by 11 pm on the assigned dates (Sunday Nights): Chapter 1 & 2 (6-19) Chapter 3 & 50 (6-26) Chapter 51 (6-3) Chapter 52 (7-10) Chapter 53 (7-24) Chapter 54 (8-7) Chapter 55 (8-21) ***Outlines must be ORIGINAL and hand written in a 5-subject spiral notebook that will serve as your “NOTES” notebook during the school year…must use Roman Numerals and Letters (see website http://www.lavc.edu/Library/outline.htm for pointers)…include relevant diagrams, pictures, tables etc… ***Answers to study guide questions need to be emailed to mdonohue@dadeschools.net by the assigned dates! The subject line of your email should look like the following: “AP Biology Chapter __#__ Study Guide by YOUR NAME (first and last)” You may submit outlines study guides EARLIER than the assigned date but NOT later! Also, be sure to print out AND save a copy. On the first meeting of class you will be submitting a hardcopy of all study guide questions and chapter outlines The second day of class, there will be a cumulative test on the assigned summer chapters (1, 2, 3, 50-55) in class. This will be 25% of your first quarter grade. Feel free to email me or tweet me with any questions. I will try and respond as soon as possible. Email: mdonohue@dadeschools.net Twitter Name: MissD_BioRox
  • 2. Chapter 1 Study Guide Questions Exploring Life on its Many Levels 1. Briefly describe the unifying themes that characterize the biological sciences. 2. Diagram the hierarchy of structural levels in biological organization. 3. Explain how the properties of life emerge from complex organization. 4. Describe the two major dynamic processes of any ecosystem. 5. Distinguish between prokaryotic and eukaryotic cells. 6. Describe the basic structure and function of DNA. 7. Describe the dilemma of reductionism. 8. Discuss the goals and activities of systems biology. List the three research developments that have advanced systems biology. 9. Explain the importance of regulatory mechanisms in living things. Distinguish between positive and negative feedback. Evolution, Unity, and Diversity 10. Distinguish among the three domains of life. List and distinguish among the three kingdoms of multicellular, eukaryotic life. 11. Explain the phrase: “life‟s dual nature of unity and diversity”. 12. Describe the observations and inferences that led Charles Darwin to his theory of evolution by natural selection. 13. Explain why diagrams of evolutionary relationships have a treelike form. The Process of Science 14. Distinguish between discovery science and hypothesis-based science. Explain why both types of exploration contribute to our understanding of nature. 15. Distinguish between quantitative and qualitative data. 16. Distinguish between inductive and deductive reasoning. 17. Explain why hypotheses must be testable and falsifiable but are not provable. 18. Describe what is meant by a controlled experiment. 19. Distinguish between the everyday meaning of the term „theory‟ and its meaning to scientists. 20. Explain how science is influenced by social and cultural factors. 21. Distinguish between science and technology. Explain how science and technology are interdependent.
  • 3. Chapter 2 Study Guide Questions Elements and Compounds 1. Distinguish between an element and a compound. 2. Identify the four elements that make up 96% of living matter. 3. Define the term trace element and give an example. Atoms and Molecules 4. Draw and label a simplified model of an atom. Explain how this model simplifies our understanding of atomic structure. 5. Distinguish between each of the following pairs of terms: a. neutron and proton b. atomic number and mass number c. atomic weight and mass number 6. Explain how the atomic number and mass number of an atom can be used to determine the number of neutrons. 7. Explain how two isotopes of an element are similar. Explain how they are different. 8. Describe two biological applications that use radioactive isotopes. 9. Define the terms energy and potential energy. Explain why electrons in the first electron shell have less potential energy than electrons in higher electron shells. 10. Distinguish among nonpolar covalent, polar covalent and ionic bonds. 11. Explain why strong covalent bonds and weak bonds are both essential in living organisms. 12. Distinguish between hydrogen bonds and van der Waals interactions. 13. Give an example that illustrates how a molecule‟s shape can determine its biological function. 14. Explain what is meant by a chemical equilibrium.
  • 4. Chapter 3 Study Guide Questions The Properties of Water 1. With the use of a diagram or diagrams, explain why water molecules are: a. polar b. capable of hydrogen bonding with 4 neighboring water molecules 2. List four characteristics of water that are emergent properties resulting from hydrogen bonding. 3. Define cohesion and adhesion. Explain how water‟s cohesion and adhesion contribute to the movement of water from the roots to the leaves of a tree. 4. Distinguish between heat and temperature, using examples to clarify your definitions. 5. Explain the following observations by referring to the properties of water: Coastal areas have milder climates than adjacent inland areas. Ocean temperatures fluctuate much less than air temperatures on land. Insects like water striders can walk on the surface of a pond without breaking the surface. If you slightly overfill a water glass, the water will form a convex surface above the top of the glass. If you place a paper towel so that it touches spilled water, the towel will draw in the water. Ice floats on water. Humans sweat and dogs pant to cool themselves on hot days. 6. Distinguish among a solute, a solvent, and a solution. 7. Distinguish between hydrophobic and hydrophilic substances. 8. Explain how you would make up a one molar (1M) solution of ethyl alcohol. The Dissociation of Water Molecules 9. Name the products of the dissociation of water and give their concentration in pure water. 10. Define acid, base, and pH. 11. Explain how acids and bases may directly or indirectly alter the hydrogen ion concentration of a solution. 12. Using the bicarbonate buffer system as an example, explain how buffers work. 13. Briefly explain the causes and effects of acid precipitation.
  • 5. Chapter 50 Study Guide Questions The Scope of Ecology 1. Define ecology. Identify the two features of organisms studied by ecologists. 2. Describe the relationship between ecology and evolutionary biology. 3. Distinguish between abiotic and biotic components of the environment. 4. Distinguish among organismal ecology, population ecology, community ecology, ecosystem ecology, and landscape ecology. 5. Clarify the difference between ecology and environmentalism. Interactions Between Organisms and the Environment Affect the Distribution of Species 6. Define biogeography. 7. Describe the questions that might be asked in a study addressing the limits of the geographic distribution of a particular species. 8. Describe the problems caused by introduced species and illustrate with a specific example. 9. Explain how habitat selection may limit distribution of a species within its range of suitable habitats. 10. Describe, with examples, how biotic and abiotic factors may affect the distribution of organisms. 11. List the four abiotic factors that are the most important components of climate. 12. Distinguish between macroclimate and microclimate patterns. 13. Provide an example of a microclimate. 14. Explain, with examples, how a body of water and a mountain range might affect regional climatic conditions. 15. Describe how an ecologist might predict the effect of global warming on distribution of a tree species. 16. Name three ways in which marine biomes affect the biosphere. Aquatic and Terrestrial Biomes 17. Describe the characteristics of the major aquatic biomes: lakes, wetlands, streams, rivers, estuaries, intertidal biomes, oceanic pelagic biomes, coral reefs, and marine benthic biomes. 18. Define the following characteristics of lakes: seasonal turnover, thermal stratification, thermocline, photic zone. 19. Explain why the following statement is false: “All communities on Earth are based on primary producers that capture light energy by photosynthesis.” 20. Describe the characteristics of the major terrestrial biomes: tropical forest, desert, savanna, chaparral, temperate grassland, coniferous forest, temperate broadleaf forest, and tundra. 21. Give an example of a biome characterized by periodic disturbance.
  • 6. Chapter 51 Study Guide Questions Introduction to Behavior and Behavioral Ecology 1. Define behavior. 2. Distinguish between proximate and ultimate questions about behavior. Ask a proximate question and an ultimate question about bird song. 3. Explain how the classical discipline of ethology led to the modern study of behavioral ecology. 4. Define fixed action patterns and give an example. 5. Define imprinting. Suggest a proximate cause and an ultimate cause for imprinting in young geese. Many Behaviors Have a Genetic Component 6. Explain how genes and environment contribute to behavior. Explain what is unique about innate behavior. 7. Distinguish between kinesis and taxis. 8. Distinguish between signal and pheromone. 9. Explain how Berthold‟s research demonstrated a genetic basis for blackcap migration. 10. Describe Insel‟s research on the genetic and physiological controls on parental behavior of prairie voles. Describe Bester-Meredith and Marler‟s research on the influence of social behavior on parental behavior of California mice. Learning 11. Explain how habituation may influence behavior. 12. Describe Tinbergen‟s classic experiment on spatial learning in digger wasps. 13. Distinguish between landmarks and cognitive maps. 14. Describe how associative learning might help a predator to avoid toxic prey. 15. Distinguish between classical conditioning and operant conditioning. 16. Describe an experiment that demonstrates problem solving in nonhuman animals. Behavioral Traits Can Evolve by Natural Selection 17. Explain how Hedrick and Riechert‟s experiments demonstrated that behavioral differences between populations might be the product of natural selection. 18. Use an example to show how researchers can demonstrate the evolution of behavior in laboratory experiments. 19. Explain optimal foraging theory. 20. Explain how behavioral ecologists carry out cost-benefit analyses to determine how an animal should forage optimally. Explain how Zach demonstrated that crows feed optimally on whelks. 21. Explain how predation risk may affect the foraging behavior of a prey species. 22. Define and distinguish among promiscuous, monogamous, and polygamous mating relationships. Define and distinguish between polygyny and polyandry. 23. Describe how the certainty of paternity influences the development of mating systems. 24. Explain why males are more likely than females to provide parental care in fishes. 25. Suggest an ultimate explanation for a female stalk-eyed fly‟s preference for mates with relatively long eyestalks. 26. Agonistic behavior in males is often a ritualized contest rather than combat. Suggest an ultimate explanation for this. 27. Explain how game theory may be used to evaluate alternative behavioral strategies. 28. Define inclusive fitness and reciprocal altruism. Discuss conditions that would favor the evolution of altruistic behavior. 29. Relate the coefficient of relatedness to the concept of altruism. 30. Define Hamilton’s rule and the concept of kin selection. Social Learning and Sociobiology 31. Define social learning and culture. 32. Explain why mate choice copying by a female may increase her fitness. 33. State the main premise of sociology.
  • 7. Chapter 52 Study Guide Characteristics of Populations 1. Distinguish between density and dispersion of a population. 2. Explain how ecologists may estimate the density of a species. 3. Describe conditions that may result in clumped dispersion, uniform dispersion, and random dispersion of individuals in a population. 4. Explain how a life table is constructed. 5. Distinguish between a life table and a reproductive table. 6. Describe the characteristics of populations that exhibit Type I, Type II, and Type III survivorship curves. Life Histories 7. Define and distinguish between semelparity and iteroparity. Explain what factors may favor the evolution of each life history strategy. 8. Explain, with examples, how limited resources and trade-offs may affect life histories. Population Growth 9. Compare the exponential model of population growth with the logistic model. 10. Explain how an environment‟s carrying capacity affects the per capita rate of increase of a population. 11. Explain the meaning of each of the following terms in the logistic model of population growth: a. rmax b. K – N c. (K – N)/K 12. Distinguish between r-selected populations and K-selected populations. Population-Limiting Factors 13. Explain how density-dependent factors affect population growth. 14. Explain, with examples, how biotic and abiotic factors may work together to control a population‟s growth. 15. Describe boom-and-bust population cycles, explaining possible causes of lynx/hare fluctuations. Human Population Growth 16. Describe the history of human population growth. 17. Define the demographic transition. 18. Compare the age structures of Italy, Afghanistan, and the United States. Describe the possible consequences for each country. 19. Describe the problems associated with estimating Earth‟s carrying capacity for the human species.
  • 8. Chapter 53 Study Guide Interspecific Interactions and Community Structure 1. List the categories of interspecific interactions and explain how each interaction may affect the population densities of the two species involved. 2. State the competitive exclusion principle. 3. Define an ecological niche and restate the competitive exclusion principle using the niche concept. 4. Distinguish between fundamental and realized niche. 5. Explain how interspecific competition may lead to resource partitioning. 6. Define and compare predation, herbivory, and parasitism. 7. Give specific examples of adaptations of predators and prey. 8. Explain how cryptic coloration and warning coloration may aid an animal in avoiding predators. 9. Distinguish between Batesian mimicry and MŸllerian mimicry. 10. Describe how predators may use mimicry to obtain prey. 11. Distinguish among endoparasites, ectoparasites, and parisitoids. 12. Distinguish among parasitism, mutualism, and commensalism. 13. Explain the relationship between species richness and relative abundance and explain how both contribute to species diversity. 14. Distinguish between a food chain and a food web. 15. Describe two ways to simplify food webs. 16. Summarize two hypotheses that explain why food chains are relatively short. 17. Explain how dominant and keystone species exert strong control on community structure. Describe an example of each. 18. Describe and distinguish between the bottom-up and top-down models of community organization. Describe possible features of a model that is intermediate between these two extremes. Disturbance and Community Structure 19. Define stability and disturbance. 20. Provide examples of how disturbance may increase or decrease species diversity. 21. Give examples of humans as widespread agents of disturbance. 22. Distinguish between primary and secondary succession. 23. Describe how species that arrive early in succession may facilitate, inhibit, or tolerate later arrivals. 24. Explain why species richness declines along an equatorial-polar gradient. 25. Explain the significance of measures of evapotranspiration to species richness. Biogeographic Factors Affect Community Biodiversity 26. Define the species-area curve. 27. Explain how species richness on islands varies according to island size and distance from the mainland. 28. Define and contrast the following pairs of hypotheses: a. interactive hypothesis versus individualistic hypothesis b. rivet model versus redundancy model
  • 9. Chapter 54 Study Guide Ecosystems, Energy, and Matter 1. Describe the fundamental relationship between autotrophs and heterotrophs in an ecosystem. 2. Explain how the first and second laws of thermodynamics apply to ecosystems. 3. Explain how decomposition connects all trophic levels in an ecosystem. Primary Production in Ecosystems 4. Explain why the amount of energy used in photosynthesis is so much less than the amount of solar energy that reaches Earth. 5. Define and compare gross primary production and net primary production. 6. Define and compare net primary production and standing crop. 7. Compare primary productivity in specific marine, freshwater, and terrestrial ecosystems. Secondary Production in Ecosystems 8. Explain why energy is said to flow rather than cycle within ecosystems. 9. Explain what factors may limit production in aquatic ecosystems. 10. Describe an experiment that provided evidence that iron availability limits oceanic primary production in some regions. Explain how iron availability is related to nitrogen availability in these regions. 11. Explain why areas of upwelling in the ocean have exceptionally high levels of primary production. 12. Distinguish between each of the following pairs of terms: a. primary and secondary production b. production efficiency and trophic efficiency 13. Explain why the production efficiency of a human is much less than the production efficiency of a mosquito. 14. Distinguish among pyramids of net production, pyramids of biomass, and pyramids of numbers. 15. Explain why aquatic ecosystems may have inverted biomass pyramids. 16. Explain why worldwide agriculture could feed more people if all humans consumed only plant material. 17. Explain the green-world hypothesis. Describe five factors that may act to keep herbivores in check. The Cycling of Chemical Elements in Ecosystems 18. Describe the four nutrient reservoirs and the processes that transfer the elements between reservoirs. 19. Name the main processes driving the water cycle. 20. Name the major reservoirs of carbon. 21. Describe the nitrogen cycle and explain the importance of nitrogen fixation to all living organisms. Name three other key bacterial processes in the nitrogen cycle. 22. Describe the phosphorus cycle and explain how phosphorus is recycled locally in most ecosystems. 23. Explain how decomposition affects the rate of nutrient cycling in ecosystems. 24. Describe how net primary production and the rate of decomposition vary with actual evapotranspiration. 25. Describe the experiments at Hubbard Brook that revealed the key role that plants play in regulating nutrient cycles. Human Impact on Ecosystems and the Biosphere 26. Describe how agricultural practices can interfere with nitrogen cycling. 27. Explain how “cultural eutrophication” can alter freshwater ecosystems. 28. Describe the causes and consequences of acid precipitation. 29. Explain why toxic compounds usually have the greatest effect on top-level carnivores. 30. Describe how increased atmospheric concentrations of carbon dioxide could affect Earth. 31. Describe the causes and consequences of ozone depletion.
  • 10. Chapter 55 Study Guide The Biodiversity Crisis 1. Distinguish between conservation biology and restoration biology. 2. Describe the three levels of biodiversity. 3. Explain why biodiversity at all levels is vital to human welfare. 4. List the four major threats to biodiversity and give an example of each. Conservation at the Population and Species Levels 5. Define and compare the small-population approach and thedeclining-population approach. 6. Explain how an extinction vortex can lead to the extinction of a small population. Describe how a greater prairie chicken population was rescued from an extinction vortex. 7. Describe the basic steps that are used to analyze declining populations and determine possible interventions in the declining-population approach. Describe the case of the red-cockaded woodpecker to illustrate this approach. 8. Describe the conflicting demands that accompany species conservation. Conservation at the Community, Ecosystem, and Landscape Levels 9. Explain how edges and corridors can strongly influence landscape biodiversity. 10. Define biodiversity hot spots and explain why they are important. 11. Explain why natural reserves must be functional parts of landscapes. 12. Define zoned reserves and explain why they are important. 13. Define restoration ecology and describe its goals. 14. Explain the importance of bioremediation and biological augmentation of ecosystem processes in restoration efforts. 15. Describe the process of adaptive management. 16. Describe the concept of sustainable development. 17. Explain the goals of the Sustainable Biosphere Initiative. 18. Define biophilia and explain why the concept gives some biologists hope.