Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Radicals and
  Rational
 Exponents



               19
RADICALS
     A perfect square is the square of a natural number. 1, 4,
     9, 16, 25, and 36 are the first six perfect squares.

     A perfect cube is the cube of a natural number. 1, 8, 27,
     64, 125, and 216 are the first six perfect cubes.

                         Perfect Powers
     This idea can be expanded to perfect powers of a variable
     for any radicand.
     The radicand xn is a perfect power when n is a multiple of
     the index of the radicand.

      A quick way to determine if a radicand xn is a perfect
      power for an index is to determine if the exponent n is
      divisible by the index of the radical.

                         Since the exponent, 20, is divisible by the index, 5,
Example:    5
                x   20
                         x20 is a perfect fifth power.
For all real numbers a and b and all rational numbers m   For all real numbers a and b and all rational numbers m
      and n,                                                    and n,


Product rule:          am • an = am + n                   Zero exponent rule:                a0 = 1, a 0


                     a    m
                                                          Raising a power to a power:
                                                                                               a   a
                                                                                                   m n    m n

                         a mn , a  0
                     an
Quotient rule:
                                                          Raising a product to a power :     abm  a m b m
                                                                                               m
                                  m     1                                                  a  am
                              a         m, a0                                                m , b0
Negative exponent rule:                 a                 Raising a quotient to a power :   b  b




                 Rational
Product Rule for Radicals
For nonnegative real numbers a and b,
             n
                 a  n b  n ab

      Example 1:
      3
          32  3 8 3 4  23 4
      3
           250  3  125 3 2  53 2
      4
          48    4
                     16 4 3  24 3
Quotient Rule for Radicals
 For nonnegative real numbers a and b,
                     n
                         a n a
                     n
                              , b0
                         b   b

Example 2:
  81         81    9
               
 100        100   10
 75                                     25
     Simplify radicand, if possible.         25  5
  3                                      1
Quotient Rule for Radicals
Example 3:

    64 x 6       3
                         64 x 6    4x2
3
       12
                                  4
     y               3
                          y12       y

    64 x 5           64 x 5         32 x 2   16 x 2 2
                        3
                                                     4x 2
    2x   3            2x             1           1

     3a 6b5       3a 8     4
                              3a 8            4
                                                  a8 4 3     a2 4 3
4
        2 13
              4      8
                                                         
    16a b        16b      4
                             16b8             4
                                                  16b8        2b 2
Rules of Exponents
Example 4:
1.) Simplify x-1/2x-2/5.
               1 2       2 5        -1 2   2 5         5 10   4 10         9 10         1
           x          x          x                       x                         x           
                                                                                                      x 9 10
2.) Simplify (y-4/5)1/3.
          y  4 5 1 3
                             y  4 5 1 3  y  4 15 
                                                                     1
                                                                   y 4 15
3.) Multiply –3a-4/9(2a1/9 – a2).
                                                                                           6
         6a 4 9 1 9   3a 4 9  2  6a 3 9  3a14 9                               3a14 9
                                                                                          a1 3
Factoring Expressions
Example 5:
1.) Factor x1/4 – x5/4. The smallest of the two exponents is 1/4.
      x1/4 – x5/4 = x1/4 (1 – x5/4-(1/4)) = x1/4 (1 – x4/4) = x1/4 (1 – x)
                         Original      Exponent
                         exponent     factored out

2.) Factor x-1/2 + x1/2. The smallest of the two exponents is -1/2.
       -1/2 + x1/2 = x -1/2 (1– x1/2-(-1/2) ) = x -1/2 (1– x) =
                                                                1 x
     x
                                                                 x1 2
                          Original      Exponent
                          exponent     factored out
SEATWORK HOMEWORK
   1        1
   2        2
   3        3
   4        4
   5        5
SEATWORK #1 :
      Like radicals are radicals having the same
      radicands. They are added the same way
      like terms are added.

              5 2 4 2 9 2
                  4           4           4

        Answer:
        54 2  44 2  94 2
        3 xyz  10 xyz  5 xyz  8 xyz
              2           2           2               2


        65 7  75 6   Cannot be simplified further.
SEATWORK #2 :                    Adding & Subtracting
          To Add or Subtract Radicals
        1. Simplify each radical expression.
        2. Combine like radicals (if there are any).

                 3 250  5 160               3 y 4 48x5  x4 3x5 y 4

    Answer:
    3 250  5 160  3  25 10  5  16 10 
            3  5 10  5  4 10  15 10  20 10  35 10
    3 y 4 48x5  x4 3x5 y 4  3 y 4 16x 4 4 3x  x4 x 4 y 4 4 3x 
            3 y  2 x 4 3 x  x  xy 4 3 x  6 xy 4 3 x  x 2 y 4 3x 
                           4 3 x (6 xy  x 2 y )
SEATWORK #3 :              Multiplying Radicals

                  Multiply:      3( 5  x )
 Answer:
       3 5 3 x
      (8  5 )( 6  2 )  Use the FOIL method.
      48  8 2  6 5  10

      ( 3  6)( 3  6)     3  6
                                2
                                         3  6 3  36 
       3  36  33   Notice that the inner and outer terms cancel.
SEATWORK #4 :                    Rationalizing Denominators
      To Rationalize a Denominator
      Multiply both the numerator and the denominator of the fraction
      by a radical that will result in the radicand in the denominator
      becoming a perfect power.

                             x2                      5 pq 4
                             y3                        2r

    Answer :
             x2      x2          y3          x 2 y 3 xy y x y
               3
                                             3
                                                        3
                                                            2
             y       y   3
                                 y   3       y         y     y

       5 pq 4   5 pq 4   2r   10 pq 4 r   10 pq 4 r q 2 10 pr
                                               
         2r       2r     2r    2r          2r           2r
SEATWORK #5 :                 Simplifying Radicals
                Simplify by rationalizing the denominator:
                            5               c  2d
                           2 1              c d

 Answer :
             5      5     2  1 5( 2  1)
                             
            2 1   2  1 2 1     2 1


            c  2d      c  2d   c d
                                    
             c d        c d    c d
                  ( c  2d )( c  d ) c  cd  2cd  d 2
                                      
                   ( c  d )( c  d )        cd
HOMEWORK #1 :                                        Simplifying Radicals

                                 1   3                         8    100                            6
                                                                                                       ( r  3)   5
   Simplify:                                                2   4
                                  3 3                          3     6                             3
                                                                                                       ( r  3)5
Answer:
          1   3   1   3   3    3    3 2 3
                               
           3 3     3 3 3      3    3   3


               8     100      8 3    100 6      24     600      4 6    100 6
          2      4       2     4        2    4       4      4       
               3       6      3 3     6   6     3      6         6       6
                      2 6    10 6 8 6 40 6          32 6       16 6
                    4     4                           
                        6      6     6      6         6          3

          6
              ( r  3)5  ( r  3)5 6            ( 5 6 ) ( 5 3 )
                                     ( r  3)                   ( r  3)( 5 6 )(10 6 )  ( r  3) 5 6 
              ( r  3)5 ( r  3)
                                 53
          3
                                                                                                  1
                                                                                           (r  3) 5 6
HOMEWORK #2 :

                                          8
                                                2
      Evaluating in Either Order
                                                3



                           8
  Answer:

            8                        2   4
                  2               2
                         3                2
                  3

            or

            8
                  2
                  3    8  64  4
                          3   2       3
                                               16
HOMEWORK #3 :


                                     8
                                               2
    Evaluating a-m/n                         
                                               3



   Answer:


       8              1                1         1   1
               2
             
                                                2 
                                      8         2 4
               3

                       8
                             2               2
                                     3
                             3
HOMEWORK #4 :

                       y                      
                                 1                    1        1
                                                             
 Simplify:                     6 6          a b ab2        3
                                                
                                                
 Answer:
             y 
                   1
               6   6      6
                               y6  y
              1 1                   1 1               1 1
              a 2b 3
             
                           ab  
                           
                                       a 2b 3
                                                            
                                                           a b
                                                                     
                                                       
                                       1              1
                                         1            1
                                 a    2
                                           b          3

                                       3      2
                                 a b  2      3                  18
HOMEWORK #5 :
 Exponent 1/n When n Is Odd
                                                        1
                  1
                                                1 
                               27
                                        1               5

             27   3                     3       
                                                32 

  Answer:         1
             27   3
                         3
                              27  3

              27 
                          1
                          3      3
                                       27  3
                      1
              1     5               1    1
                               5      
              32                    32   2     19
Submitted
by:
    John Marion G. De Guzman
     2nd year BTTE AUTOMOTIVE
     ALGEBRA 111

More Related Content

Algebra

  • 1. Radicals and Rational Exponents 19
  • 2. RADICALS A perfect square is the square of a natural number. 1, 4, 9, 16, 25, and 36 are the first six perfect squares. A perfect cube is the cube of a natural number. 1, 8, 27, 64, 125, and 216 are the first six perfect cubes. Perfect Powers This idea can be expanded to perfect powers of a variable for any radicand. The radicand xn is a perfect power when n is a multiple of the index of the radicand. A quick way to determine if a radicand xn is a perfect power for an index is to determine if the exponent n is divisible by the index of the radical. Since the exponent, 20, is divisible by the index, 5, Example: 5 x 20 x20 is a perfect fifth power.
  • 3. For all real numbers a and b and all rational numbers m For all real numbers a and b and all rational numbers m and n, and n, Product rule: am • an = am + n Zero exponent rule: a0 = 1, a 0 a m Raising a power to a power: a   a m n m n  a mn , a  0 an Quotient rule: Raising a product to a power : abm  a m b m m m 1 a am a  m, a0    m , b0 Negative exponent rule: a Raising a quotient to a power : b b Rational
  • 4. Product Rule for Radicals For nonnegative real numbers a and b, n a  n b  n ab Example 1: 3 32  3 8 3 4  23 4 3  250  3  125 3 2  53 2 4 48  4 16 4 3  24 3
  • 5. Quotient Rule for Radicals For nonnegative real numbers a and b, n a n a n  , b0 b b Example 2: 81 81 9   100 100 10 75 25  Simplify radicand, if possible.  25  5 3 1
  • 6. Quotient Rule for Radicals Example 3: 64 x 6 3 64 x 6 4x2 3 12   4 y 3 y12 y 64 x 5 64 x 5 32 x 2 16 x 2 2  3    4x 2 2x 3 2x 1 1 3a 6b5 3a 8 4 3a 8 4 a8 4 3 a2 4 3 4  2 13 4 8    16a b 16b 4 16b8 4 16b8 2b 2
  • 7. Rules of Exponents Example 4: 1.) Simplify x-1/2x-2/5. 1 2 2 5 -1 2   2 5  5 10   4 10  9 10 1 x x x x x  x 9 10 2.) Simplify (y-4/5)1/3. y  4 5 1 3  y  4 5 1 3  y  4 15  1 y 4 15 3.) Multiply –3a-4/9(2a1/9 – a2). 6  6a 4 9 1 9   3a 4 9  2  6a 3 9  3a14 9    3a14 9 a1 3
  • 8. Factoring Expressions Example 5: 1.) Factor x1/4 – x5/4. The smallest of the two exponents is 1/4. x1/4 – x5/4 = x1/4 (1 – x5/4-(1/4)) = x1/4 (1 – x4/4) = x1/4 (1 – x) Original Exponent exponent factored out 2.) Factor x-1/2 + x1/2. The smallest of the two exponents is -1/2. -1/2 + x1/2 = x -1/2 (1– x1/2-(-1/2) ) = x -1/2 (1– x) = 1 x x x1 2 Original Exponent exponent factored out
  • 9. SEATWORK HOMEWORK 1 1 2 2 3 3 4 4 5 5
  • 10. SEATWORK #1 : Like radicals are radicals having the same radicands. They are added the same way like terms are added. 5 2 4 2 9 2 4 4 4 Answer: 54 2  44 2  94 2 3 xyz  10 xyz  5 xyz  8 xyz 2 2 2 2 65 7  75 6 Cannot be simplified further.
  • 11. SEATWORK #2 : Adding & Subtracting To Add or Subtract Radicals 1. Simplify each radical expression. 2. Combine like radicals (if there are any). 3 250  5 160 3 y 4 48x5  x4 3x5 y 4 Answer: 3 250  5 160  3  25 10  5  16 10  3  5 10  5  4 10  15 10  20 10  35 10 3 y 4 48x5  x4 3x5 y 4  3 y 4 16x 4 4 3x  x4 x 4 y 4 4 3x  3 y  2 x 4 3 x  x  xy 4 3 x  6 xy 4 3 x  x 2 y 4 3x   4 3 x (6 xy  x 2 y )
  • 12. SEATWORK #3 : Multiplying Radicals Multiply: 3( 5  x ) Answer: 3 5 3 x (8  5 )( 6  2 )  Use the FOIL method. 48  8 2  6 5  10 ( 3  6)( 3  6)   3  6 2 3  6 3  36  3  36  33 Notice that the inner and outer terms cancel.
  • 13. SEATWORK #4 : Rationalizing Denominators To Rationalize a Denominator Multiply both the numerator and the denominator of the fraction by a radical that will result in the radicand in the denominator becoming a perfect power. x2 5 pq 4 y3 2r Answer : x2 x2 y3 x 2 y 3 xy y x y 3    3  3  2 y y 3 y 3 y y y 5 pq 4 5 pq 4 2r 10 pq 4 r 10 pq 4 r q 2 10 pr      2r 2r 2r 2r 2r 2r
  • 14. SEATWORK #5 : Simplifying Radicals Simplify by rationalizing the denominator: 5 c  2d 2 1 c d Answer : 5 5 2  1 5( 2  1)    2 1 2  1 2 1 2 1 c  2d c  2d c d    c d c d c d ( c  2d )( c  d ) c  cd  2cd  d 2  ( c  d )( c  d ) cd
  • 15. HOMEWORK #1 : Simplifying Radicals 1 3 8 100 6 ( r  3) 5 Simplify:  2 4 3 3 3 6 3 ( r  3)5 Answer: 1 3 1 3 3 3 3 2 3        3 3 3 3 3 3 3 3 8 100 8 3 100 6 24 600 4 6 100 6 2 4 2  4   2 4  4 4  3 6 3 3 6 6 3 6 6 6 2 6 10 6 8 6 40 6 32 6 16 6 4 4     6 6 6 6 6 3 6 ( r  3)5 ( r  3)5 6 ( 5 6 ) ( 5 3 )   ( r  3)  ( r  3)( 5 6 )(10 6 )  ( r  3) 5 6  ( r  3)5 ( r  3) 53 3 1 (r  3) 5 6
  • 16. HOMEWORK #2 : 8 2 Evaluating in Either Order 3  8 Answer: 8  2   4 2 2  3 2 3 or 8 2 3  8  64  4 3 2 3 16
  • 17. HOMEWORK #3 : 8 2 Evaluating a-m/n  3 Answer: 8 1 1 1 1 2     2   8 2 4 3 8 2 2 3 3
  • 18. HOMEWORK #4 : y    1 1 1  Simplify: 6 6  a b ab2 3     Answer: y  1 6 6  6 y6  y  1 1   1 1  1 1  a 2b 3  ab     a 2b 3    a b       1 1 1  1 a 2 b 3 3 2 a b 2 3 18
  • 19. HOMEWORK #5 : Exponent 1/n When n Is Odd 1 1  1   27 1 5 27 3 3    32  Answer: 1 27 3  3 27  3  27  1 3  3  27  3 1  1  5 1 1    5   32  32 2 19
  • 20. Submitted by: John Marion G. De Guzman 2nd year BTTE AUTOMOTIVE ALGEBRA 111