Slides for an upcoming talk about Apache Storm and Spark Streaming.
This is a draft and is subject to change. Comments welcome.
1 of 39
More Related Content
Apache storm vs. Spark Streaming
1. Apache Storm and Spark
Streaming Compared
P. Taylor Goetz, Hortonworks
@ptgoetz
2. Honestly...
• I know a lot more about Apache Storm than I do
Apache Spark Streaming.
• I've been involved with Apache Storm, in one
way or another, since it was open-sourced.
• I'm admittedly biased.
3. But...
• A number of articles/papers comparing Apache
Storm and Spark Streaming are inaccurate in
terms of Storm’s features and performance
characteristics.
• Code and configuration for those studies is not
available, so independent verification is
impossible.
• Claims don't match real-world observations.
4. But...
• There is an inherent “Home Team Advantage” in
any benchmark comparison.
• Without open source code, any benchmark
claims are essentially marketing fluff, and should
be taken with a grain or two of NaCl.
• Any benchmark claim should be independently
verifiable.
5. Spark Streaming Paper
• Compares Spark Streaming (Micro-Batch) to
Core Storm (One-at-a-Time)
• A more appropriate comparison would have
been with Storm’s Trident (Micro-Batch) API
• Trident mentioned only in passing (on pages 3
and 12)
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.pdf
6. Spark Streaming Paper
• Benchmark code/configuration not publicly
available
• Performance claims not independently verifiable
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.pdf
7. Spark Streaming Paper
• Granted, the Spark Streaming paper is almost 2
years old and written at a time when Trident was
relatively new.
• However, that paper is often cited when
comparing Apache Storm and Spark Streaming,
particularly in terms of performance.
• A lot can change in 2 years.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.pdf
9. Batch vs. Streaming
• Storm is a stream processing framework that
also does micro-batching (Trident).
• Spark is a batch processing framework that also
does micro-batching (Spark Streaming).
12. Apache Storm: Two
Streaming APIs
Core Storm (Spouts and Bolts)!
• One at a Time
• Lower Latency
• Operates on Tuple Streams
Trident (Streams and Operations)!
• Micro-Batch
• Higher Throughput
• Operates on Streams of Tuple Batches and Partitions
13. Language Options
Core Storm Storm Trident Spark Streaming
• Java
• Clojure
• Scala
• Python
• Ruby
• others*
• Java
• Clojure
• Scala
• Java
• Scala
• Python
*Storm’s Multi-Lang feature allows the use of virtually any programming language.
14. Reliability Models
Core Storm Storm Trident
Spark
Streaming
At Most Once Yes Yes No
At Least Once Yes Yes No*
Exactly Once No Yes Yes*
*In some node failure scenarios, Spark Streaming
falls back to at-least-once processing or data loss.
16. Production Deployments
Apache Storm Spark Streaming
• Too many to list
http://
storm.incubator.apache.org/
documentation/Powered-
By.html
• Sharethrough
http://
engineering.sharethrough.com/blog/
2014/06/27/sharethrough-at-spark-
summit-2014-spark-streaming-for-
realtime-auctions/
19. Worker Failure:
Spark Streaming
"So if a worker node fails, then the system can recompute
the lost from the the left over copy of the input data.
However, if the worker node where a network receiver was
running fails, then a tiny bit of data may be lost, that is, the
data received by the system but not yet replicated to other
node(s)."
Only HDFS-backed data sources are fully fault tolerant.
https://spark.apache.org/docs/latest/streaming-programming-
guide.html#fault-tolerance-properties
21. Worker Failure:
Apache Storm
• If a supervisor node fails, Nimbus will reassign that node's
tasks to other nodes in the cluster.
• Any tuples sent to a failed node will time out and be
replayed (In Trident, any batches will be replayed).
• Delivery guarantees dependent on a reliable data source.
22. Data Source Reliability
• A data source is considered unreliable if there is no means
to replay a previously-received message.
• A data source is considered reliable if it can somehow replay
a message if processing fails at any point.
• A data source is considered durable if it can replay any
message or set of messages given the necessary selection
criteria.
!
(These are my terms.)
23. Reliability Limitations:
Apache Storm
• Exactly once processing requires a durable data source.
• At least once processing requires a reliable data source.
• An unreliable data source can be wrapped to provide
additional guarantees.
• With durable and reliable sources, Storm will not drop data.
• Common pattern: Back unreliable data sources with
Apache Kafka (minor latency hit traded for 100% durability).
26. Apache Storm + Kafka
Apache Kafka is an ideal source for Storm topologies. It
provides everything necessary for:
• At most once processing
• At least once processing
• Exactly once processing
Apache Storm includes Kafka spout implementations for all
levels of reliability.
Kafka Supports a wide variety of languages and integration
points for both producers and consumers.
27. Reliability Limitations:
Spark Streaming
• Fault tolerance and reliability guarantees require
HDFS-backed data source.
• Moving data to HDFS prior to stream processing
introduces additional latency.
• Network data sources (Kafka, etc.) are
vulnerable to data loss in the event of a worker
node failure.
https://spark.apache.org/docs/latest/streaming-programming-
guide.html#fault-tolerance-properties
28. Performance
“The main reason cited by Tathagata for Spark's
performance gain over Storm is the aggregation of
small records that occurs through the mechanics
of RDDs.”
http://www.cs.duke.edu/~kmoses/cps516/dstream.html
In other words: Micro-Batching
31. Netty Transport
• Introduced in Apache Storm
0.9.0
• Faster, pure Java alternative
for 0MQ
• Yahoo! Engineering
announcement:
http://yahooeng.tumblr.com/post/
64758709722/making-storm-fly-
with-netty
• Performance Test Code:
https://github.com/yahoo/storm-
perf-test
Netty
0mq
32. STORM-297
• Introduced in Apache Storm
0.9.2-incubating
• Big performance boost,
especially for small messages
• JIRA Discussion:
https://issues.apache.org/jira/
browse/STORM-297
• Performance Test Code:
https://github.com/yahoo/storm-
perf-test
33. Benchmarking Storm
• 5 nodes on AWS (m1.large - not very powerful)
• 1 ZooKeeper, 1 Nimbus, 3 Supervisors
• Storm Core API and Trident API benchmarks
• Is Trident API slower than Core API?
https://github.com/ptgoetz/storm-benchmark
34. Is Trident API slower than
Core API?
• On low-power hardware with 3 supervisor nodes…
• Core API:
~150k msg./sec. with ~80 ms. latency
• Trident API:
~300k msg./sec. with ~250 ms. latency
• Higher throughput possible with increased latency
• Better performance with bigger hardware
35. Is Spark + Spark Streaming a
"Lambda Architecture in a Box?"
• No!
• Lambda is a lot more than batch + streaming.
• Lambda is powerful when applied correctly, but is
not right for every use case.
• Spark and Spark Streaming have overlapping
programming models for batch and micro-batch.
• The rest is up to you (as it is with Storm).
36. Final Thoughts
In general (not specific to Spark Streaming):!
• Beware any claim that A is X times faster than B.
• Performance is a matter of proper tuning for the
use case at hand.
• Any system can be hobbled to look bad in a
benchmark.
37. Recommendation
• It is up to you, and your specific use case.
• Consider fault tolerance. Is data loss
acceptable?
• Consider all facets and make informed
decisions.
• Rely on your own benchmarks