Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Physical and Chemical Changes
Pure Substances
Mixtures
States of Matter
Everything that has mass and
volume is called matter.
All matter can undergo
physical and chemical changes
A physical change occurs when the
substance changes state but does not change
its chemical composition. For example:
water freezing into ice, cutting a piece of
wood into smaller pieces, etc. The form or
appearance has changed, but the properties
of that substance are the same (i.e. it has the
same melting point, boiling point, chemical
composition, etc.)
Basics of Matter.ppt
• Melting point
• Boiling point
• Vapor pressure
• Color
• State of matter
• Density
• Electrical conductivity
• Solubility
• Adsorption to a
surface
• Hardness
A chemical change occurs when a pure
substance changes into a new pure substance.
Chemical changes are also called chemical
reactions.
Common signs of a chemical change include
color change, forming of bubbles,
temperature change, etc).
Basics of Matter.ppt
• Exothermic reactions release heat.
• Combustion (burning)
• Sodium and water
• Endothermic reactions absorb heat.
• Evaporation
• Cold packs (ammonium hydrate and
water)
• Reaction with acids
• Reaction with bases
(alkalis)
• Reaction with oxygen
(combustion)
• Ability to act as
oxidizing agent
• Ability to act as
reducing agent
• Reaction with other
elements
• Decomposition into
simpler substances
• Corrosion
• Physical and chemical properties may be
intensive or extensive.
• Intensive properties such as density, color,
and boiling point do not depend on the size
of the sample of matter and can be used to
identify substances.
• Extensive properties such as mass and
volume do depend on the quantity of the
sample.
• Physical properties are those that we can
determine without changing the identity of
the substance we are studying.
• The physical properties of sodium metal can
be observed or measured. It is a soft,
lustrous, silver-colored metal with a
relatively low melting point and low
density.
• Hardness, color, melting point and density
are all physical properties.
• Chemical properties describe the way a
substance can change or react to form other
substances. These properties, then, must be
determined using a process that changes the
identity of the substance of interest.
• One of the chemical properties of alkali metals
such as sodium and potassium is that they react
with water. To determine this, we would have to
combine an alkali metal with water and observe
what happens.
• In other words, we have to define chemical
properties of a substance by the chemical changes
it undergoes.
• Fixed composition
• Cannot be separated into simpler substances
by physical methods (physical changes)
• Can only be changed in identity and
properties by chemical methods
• Properties do not vary
Compounds
• Can be decomposed
into simpler
substances by
chemical changes,
always in a definite
ratio
Elements
• Cannot be
decomposed into
simpler substances by
chemical changes
Mixtures are two or more substances that are
NOT chemically combined.
Mixtures do not:
 Have constant boiling points
 Have constant melting points
• Variable composition
• Components retain their characteristic
properties
• May be separated into pure substances by
physical methods
• Mixtures of different compositions may
have widely different properties
Homogenous mixtures look the same
throughout but can be separated by
physical means (dissolution, centrifuge,
gravimetric filtering, etc.). Examples:
milk, yogurt
• Have the same composition
throughout
• Components are indistinguishable
• May or may not scatter light
Examples: milk, yogurt, etc.
Solutions are homogenous mixtures that
do not scatter light. These mixtures are
created when something is completely
dissolved in pure water. Therefore, they
are easily separated by distillation or
evaporation.
Examples: sugar water, salt water
Heterogeneous mixtures are composed of
large pieces that are easily separated by
physical means (ie. density, polarity,
metallic properties).
• Do not have same composition
throughout
• Components are distinguishable
Examples: fruit salad, vegetable soup, etc.
Colloids are solutions. They can be described
as a substance trapped inside another
substance. They can be identified by their
characteristic scattering of light.
For example: air trapped inside the fat
molecules in whipped cream.
•Solids
•Liquids
•Gases
•Plasma
•Others
(And how the Kinetic Molecular
Theory affects each)
Basics of Matter.ppt
•Have a definite shape
•Have a definite volume
Molecules are held close together
and there is very little movement
between them.
Kinetic Molecular Theory
•Have an indefinite shape
•Have a definite volume
Kinetic Molecular Theory:
Atoms and molecules have more
space between them than a solid
does, but less than a gas (ie. It is
more “fluid”.)
•Have an indefinite shape
•Have an indefinite volume
Kinetic Molecular Theory:
Molecules are moving in random
patterns with varying amounts of
distance between the particles.
At 100°C, water
becomes water
vapor, a gas.
Molecules can
move randomly
over large
distances.
Below 0°C, water
solidifies to become
ice. In the solid state,
water molecules are
held together in a
rigid structure.
Between 0°C and 100
°C, water is a liquid.
In the liquid state,
water molecules are
close together, but
can move about
freely.
Changing states requires energy in either
the form of heat. Changing states may also
be due to the change in pressure in a
system.
Heat of formation, Hf. Heat of vaporization,
Plasma is by far the most common form
of matter. Plasma in the stars and in the
tenuous space between them makes up
over 99% of the visible universe and
perhaps most of that which is not
visible.

More Related Content

Basics of Matter.ppt

  • 1. Physical and Chemical Changes Pure Substances Mixtures States of Matter
  • 2. Everything that has mass and volume is called matter.
  • 3. All matter can undergo physical and chemical changes
  • 4. A physical change occurs when the substance changes state but does not change its chemical composition. For example: water freezing into ice, cutting a piece of wood into smaller pieces, etc. The form or appearance has changed, but the properties of that substance are the same (i.e. it has the same melting point, boiling point, chemical composition, etc.)
  • 6. • Melting point • Boiling point • Vapor pressure • Color • State of matter • Density • Electrical conductivity • Solubility • Adsorption to a surface • Hardness
  • 7. A chemical change occurs when a pure substance changes into a new pure substance. Chemical changes are also called chemical reactions. Common signs of a chemical change include color change, forming of bubbles, temperature change, etc).
  • 9. • Exothermic reactions release heat. • Combustion (burning) • Sodium and water • Endothermic reactions absorb heat. • Evaporation • Cold packs (ammonium hydrate and water)
  • 10. • Reaction with acids • Reaction with bases (alkalis) • Reaction with oxygen (combustion) • Ability to act as oxidizing agent • Ability to act as reducing agent • Reaction with other elements • Decomposition into simpler substances • Corrosion
  • 11. • Physical and chemical properties may be intensive or extensive.
  • 12. • Intensive properties such as density, color, and boiling point do not depend on the size of the sample of matter and can be used to identify substances.
  • 13. • Extensive properties such as mass and volume do depend on the quantity of the sample.
  • 14. • Physical properties are those that we can determine without changing the identity of the substance we are studying.
  • 15. • The physical properties of sodium metal can be observed or measured. It is a soft, lustrous, silver-colored metal with a relatively low melting point and low density. • Hardness, color, melting point and density are all physical properties.
  • 16. • Chemical properties describe the way a substance can change or react to form other substances. These properties, then, must be determined using a process that changes the identity of the substance of interest.
  • 17. • One of the chemical properties of alkali metals such as sodium and potassium is that they react with water. To determine this, we would have to combine an alkali metal with water and observe what happens. • In other words, we have to define chemical properties of a substance by the chemical changes it undergoes.
  • 18. • Fixed composition • Cannot be separated into simpler substances by physical methods (physical changes) • Can only be changed in identity and properties by chemical methods • Properties do not vary
  • 19. Compounds • Can be decomposed into simpler substances by chemical changes, always in a definite ratio Elements • Cannot be decomposed into simpler substances by chemical changes
  • 20. Mixtures are two or more substances that are NOT chemically combined. Mixtures do not:  Have constant boiling points  Have constant melting points
  • 21. • Variable composition • Components retain their characteristic properties • May be separated into pure substances by physical methods • Mixtures of different compositions may have widely different properties
  • 22. Homogenous mixtures look the same throughout but can be separated by physical means (dissolution, centrifuge, gravimetric filtering, etc.). Examples: milk, yogurt
  • 23. • Have the same composition throughout • Components are indistinguishable • May or may not scatter light Examples: milk, yogurt, etc.
  • 24. Solutions are homogenous mixtures that do not scatter light. These mixtures are created when something is completely dissolved in pure water. Therefore, they are easily separated by distillation or evaporation. Examples: sugar water, salt water
  • 25. Heterogeneous mixtures are composed of large pieces that are easily separated by physical means (ie. density, polarity, metallic properties).
  • 26. • Do not have same composition throughout • Components are distinguishable Examples: fruit salad, vegetable soup, etc.
  • 27. Colloids are solutions. They can be described as a substance trapped inside another substance. They can be identified by their characteristic scattering of light. For example: air trapped inside the fat molecules in whipped cream.
  • 28. •Solids •Liquids •Gases •Plasma •Others (And how the Kinetic Molecular Theory affects each)
  • 30. •Have a definite shape •Have a definite volume Molecules are held close together and there is very little movement between them. Kinetic Molecular Theory
  • 31. •Have an indefinite shape •Have a definite volume Kinetic Molecular Theory: Atoms and molecules have more space between them than a solid does, but less than a gas (ie. It is more “fluid”.)
  • 32. •Have an indefinite shape •Have an indefinite volume Kinetic Molecular Theory: Molecules are moving in random patterns with varying amounts of distance between the particles.
  • 33. At 100°C, water becomes water vapor, a gas. Molecules can move randomly over large distances. Below 0°C, water solidifies to become ice. In the solid state, water molecules are held together in a rigid structure. Between 0°C and 100 °C, water is a liquid. In the liquid state, water molecules are close together, but can move about freely.
  • 34. Changing states requires energy in either the form of heat. Changing states may also be due to the change in pressure in a system. Heat of formation, Hf. Heat of vaporization,
  • 35. Plasma is by far the most common form of matter. Plasma in the stars and in the tenuous space between them makes up over 99% of the visible universe and perhaps most of that which is not visible.