Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
What role does Quantum
Mechanics play in Biology?
K. Birgitta Whaley, UC Berkeley
Exploring	
  the	
  Quantum	
  in	
  Biology	
  	
  	
  
plants,	
  bacteria:	
  
photosynthesis	
  
bird	
  naviga5on	
  
animal	
  smell	
  	
   ion	
  channels	
  
brain…	
  
Quantum vs Classical ?
W.	
  H.	
  Zurek,	
  Physics	
  Today,	
  Oct.	
  1991	
  
• QM should apply to biology (life)
Bohr, Jordan,… 1929 onwards
•  1935
probed genetic structure and
mutations with X-rays
Quantum Biology has long roots:
first quantum probe of biological structures
and function, acknowledgement of need
to understand detailed molecular structure
of functional biological entities
N. Timofeev-Resovsky (genetics)
K. Zimmer (photobiology)
M. Delbrück (quantum physics)
Developing tools for
studying biological
structure and
function at
unprecedented
spatial and temporal
resolution
Can quantum
coherence be
relevant for biological
function?
Biological	
  func5on	
  across	
  all	
  5me	
  and	
  	
  
size	
  scales	
  
A.  Vaziri
B.  HHMI/U. Vienna
• First Era: 1930 ‒ 1950s (b.L.)
molecular structure and pathways,
energetics, kinetics, stability ‒ quantum
nature of molecular energy levels, energy
barriers... (Schrödinger What is Life? 1943)
• Second Era:1960s onward (a.L.)
Quantum dynamical effects ‒ new generations
of dynamical probes, new tools and
innovation via quantum science and
technology...
DNA 1953
•  Microscopic probes of living cells,
cellular response, biochemical &
electrical monitoring, biomolecule
delivery…
•  Ultrafast spectroscopy, e.g., for
quantum dynamics of electronic
energy transfer in photosynthesis
Quantum Biology: tools of quantum science
and nanotechnology give new probes of
structure and dynamics of biological systems
NV centers: R. Walsworth, J. Wrachtrup,
M. Lukin, H. Park, A. Jacoby....
Si nanorods
offer cellular
access: H. Park
G. Fleming, G. Scholes, G. Engel, R. van
Grondelle, N. van Hulst....
Photosynthesis	
  
The	
  “light”	
  reac5ons	
  are	
  rapid	
  and	
  
efficient,	
  >95%	
  conversion	
  of	
  photons	
  
…Secondary	
  electron	
  transfer	
  reac5ons,	
  	
  Water	
  
spliMng,	
  Proton	
  transport	
  across	
  thylakoid	
  membrane,	
  
Reduc5on	
  of	
  NADP+,	
  ATP	
  synthesis…	
  
	
  
Charge	
  separa5on	
  Reac6on
Center	
  
Blue-­‐absorbing	
  pigments	
  
Red-­‐absorbing	
  	
  
pigments	
  
Orange-­‐absorbing	
  	
  
pigments	
  
“Antenna”	
  
Light-­‐harves5ng	
  
	
  
	
  
	
  
	
  
bacteria	
  
green	
  	
  
plants	
  
Photosystem	
  II	
  is	
  the	
  most	
  sophis6cated	
  nano	
  machine	
  on	
  earth	
  
Pablo Picasso – House and Trees
Paris, Winter 1908
140g	
  of	
  chlorophyll	
  per	
  tree	
  
Reac5on	
  	
  
Center	
  
Light	
  	
  
Harvester	
  
How	
  many	
  chlorophylls	
  are	
  there	
  in	
  Picasso’s	
  Tree?	
  
500	
  mg	
  of	
  primary	
  electron	
  donor	
  chlorophylls	
  
Photosynthe5c	
  membrane	
  of	
  purple	
  bacteria	
  
Energy	
  travels	
  over	
  15-­‐30	
  nm	
  paths	
  in	
  1	
  ns	
  	
  
excita5on	
  energy	
  is	
  
spread	
  out	
  over	
  rough	
  
energy	
  landscape	
  
Quantum	
  effects	
  in	
  photosynthesis	
  
5	
  nm	
  
Light	
  Harvester	
  
Reac5on	
  Center	
  
light	
  harves5ng	
  has	
  near	
  perfect	
  efficiency	
  
	
  experiments	
  reveal	
  wave-­‐like	
  	
  
	
  ‘quantum	
  coherent’	
  energy	
  transfer	
  	
  
Absorp5on	
  
Energy	
  	
  
Conversion	
  
-­‐	
  
+	
  
Energy	
  	
  
Storage	
  
ATP	
  
NADPH	
  
Sucrose	
  
•  quantum	
  coherence	
  contributes	
  ~10%	
  to	
  efficiency	
  
•  natural	
  systems	
  are	
  op5mal	
  with	
  respect	
  to	
  all	
  
parameters,	
  no	
  ar5ficial	
  system	
  is	
  compete5ve	
  
•  coherence	
  enables	
  robust	
  uphill	
  and	
  long	
  range	
  
transport	
  
Does excitation hop or travel like a wave?
What	
  is	
  coherence?	
  
Incoherent	
  waves	
  
All	
  together	
  now!	
  	
  
Pedalling	
  in	
  step	
  
Coherent	
  waves	
  
Rela%ve	
  phases	
  are	
  stable	
  in	
  %me,	
  space	
  
Coherent	
  addi5on	
  of	
  waves	
  of	
  
different	
  frequencies	
  gives	
  beats	
  	
  
interference	
  phenomenon	
  
τ T
Emission
Frequency
Excitation Frequency
Fourier Transform
with Respect to τ
2D Electronic Correlation Spectrum
A 2D spectrum is a correlation map between the initial and final
excitations and coherences
The correlation depends on the processes occurring during time T
Spectrally
resolved,
heterodyne
detected photon
echo
FMO (green sulfur bacteria): 2D fsec spectra
Measured
Points:
0, 10, 20, 30,
40, 50, 65, 80,
95, 110, 125,
140, 155, 170,
185, 200, 220,
240, 260, 280,
300, 330, 360,
390, 420, 450,
480, 510, 540,
570, 600, 630,
660fs
Fleming et al.
2007
Electronic	
  entanglement	
  	
  
| ⇥ |g⇥1|e⇥2 + |e⇥1|g⇥2
Site	
  1	
   Site	
  2	
  
Non-­‐local	
  quantum	
  correla5ons	
  between	
  molecular	
  
electronic	
  states	
  
Schrödinger	
  1935:	
  entanglement	
  (Verschränkung)	
  is	
  	
  
“the	
  characteris6c	
  trait	
  of	
  quantum	
  mechanics”	
  
17
Entanglement analog with ambiguous cube:
perceive orientational correlations between boxes
All coherence
experiments to date show
quantum beating in a
single complex –
Is quantum coherence relevant to long
range energy transfer?
Photosystem II super-complex, courtesy of Roberta Croce
•  Is coherence transmitted
between complexes?
•  If so, why? How might it help
photosynthetic function?
Hoyer et al. PRE (2012)
•  coherence is transmitted
•  enables unidirectional transport
•  enables uphill transport
Photosynthesis: what next?
•  fundamental understanding of quantum effects in
efficient energy conversion for life, role in biology
•  reengineer photosynthesis - design of artificial devices
for effective ‘quantum’ conversion of sunlight into
chemical energy without competing biological
constraints
•  lessons for design of robust and sensitive quantum
devices
an “evolved” natural quantum processor?
design rules for robust
quantum devices and efficient
transduction of solar energy?
Elysia chlorotica
captures chloroplasts from algae and store these in body, never need to
eat again (for 9-11 months of life)….
Green sea slug

More Related Content

Birgitta Whaley (Berkeley Quantum Computation) at a LASER http://www.scaruffi.com/leonardo/feb2015b.html

  • 1. What role does Quantum Mechanics play in Biology? K. Birgitta Whaley, UC Berkeley
  • 2. Exploring  the  Quantum  in  Biology       plants,  bacteria:   photosynthesis   bird  naviga5on   animal  smell     ion  channels   brain…  
  • 3. Quantum vs Classical ? W.  H.  Zurek,  Physics  Today,  Oct.  1991  
  • 4. • QM should apply to biology (life) Bohr, Jordan,… 1929 onwards •  1935 probed genetic structure and mutations with X-rays Quantum Biology has long roots: first quantum probe of biological structures and function, acknowledgement of need to understand detailed molecular structure of functional biological entities N. Timofeev-Resovsky (genetics) K. Zimmer (photobiology) M. Delbrück (quantum physics)
  • 5. Developing tools for studying biological structure and function at unprecedented spatial and temporal resolution Can quantum coherence be relevant for biological function? Biological  func5on  across  all  5me  and     size  scales   A.  Vaziri B.  HHMI/U. Vienna
  • 6. • First Era: 1930 ‒ 1950s (b.L.) molecular structure and pathways, energetics, kinetics, stability ‒ quantum nature of molecular energy levels, energy barriers... (Schrödinger What is Life? 1943) • Second Era:1960s onward (a.L.) Quantum dynamical effects ‒ new generations of dynamical probes, new tools and innovation via quantum science and technology... DNA 1953
  • 7. •  Microscopic probes of living cells, cellular response, biochemical & electrical monitoring, biomolecule delivery… •  Ultrafast spectroscopy, e.g., for quantum dynamics of electronic energy transfer in photosynthesis Quantum Biology: tools of quantum science and nanotechnology give new probes of structure and dynamics of biological systems NV centers: R. Walsworth, J. Wrachtrup, M. Lukin, H. Park, A. Jacoby.... Si nanorods offer cellular access: H. Park G. Fleming, G. Scholes, G. Engel, R. van Grondelle, N. van Hulst....
  • 8. Photosynthesis   The  “light”  reac5ons  are  rapid  and   efficient,  >95%  conversion  of  photons   …Secondary  electron  transfer  reac5ons,    Water   spliMng,  Proton  transport  across  thylakoid  membrane,   Reduc5on  of  NADP+,  ATP  synthesis…     Charge  separa5on  Reac6on Center   Blue-­‐absorbing  pigments   Red-­‐absorbing     pigments   Orange-­‐absorbing     pigments   “Antenna”   Light-­‐harves5ng           bacteria   green     plants  
  • 9. Photosystem  II  is  the  most  sophis6cated  nano  machine  on  earth   Pablo Picasso – House and Trees Paris, Winter 1908 140g  of  chlorophyll  per  tree   Reac5on     Center   Light     Harvester   How  many  chlorophylls  are  there  in  Picasso’s  Tree?   500  mg  of  primary  electron  donor  chlorophylls  
  • 10. Photosynthe5c  membrane  of  purple  bacteria   Energy  travels  over  15-­‐30  nm  paths  in  1  ns     excita5on  energy  is   spread  out  over  rough   energy  landscape   Quantum  effects  in  photosynthesis   5  nm   Light  Harvester   Reac5on  Center   light  harves5ng  has  near  perfect  efficiency    experiments  reveal  wave-­‐like      ‘quantum  coherent’  energy  transfer     Absorp5on   Energy     Conversion   -­‐   +   Energy     Storage   ATP   NADPH   Sucrose   •  quantum  coherence  contributes  ~10%  to  efficiency   •  natural  systems  are  op5mal  with  respect  to  all   parameters,  no  ar5ficial  system  is  compete5ve   •  coherence  enables  robust  uphill  and  long  range   transport  
  • 11. Does excitation hop or travel like a wave?
  • 12. What  is  coherence?   Incoherent  waves   All  together  now!     Pedalling  in  step   Coherent  waves   Rela%ve  phases  are  stable  in  %me,  space  
  • 13. Coherent  addi5on  of  waves  of   different  frequencies  gives  beats     interference  phenomenon  
  • 14. τ T Emission Frequency Excitation Frequency Fourier Transform with Respect to τ 2D Electronic Correlation Spectrum A 2D spectrum is a correlation map between the initial and final excitations and coherences The correlation depends on the processes occurring during time T Spectrally resolved, heterodyne detected photon echo
  • 15. FMO (green sulfur bacteria): 2D fsec spectra Measured Points: 0, 10, 20, 30, 40, 50, 65, 80, 95, 110, 125, 140, 155, 170, 185, 200, 220, 240, 260, 280, 300, 330, 360, 390, 420, 450, 480, 510, 540, 570, 600, 630, 660fs Fleming et al. 2007
  • 16. Electronic  entanglement     | ⇥ |g⇥1|e⇥2 + |e⇥1|g⇥2 Site  1   Site  2   Non-­‐local  quantum  correla5ons  between  molecular   electronic  states   Schrödinger  1935:  entanglement  (Verschränkung)  is     “the  characteris6c  trait  of  quantum  mechanics”  
  • 17. 17 Entanglement analog with ambiguous cube: perceive orientational correlations between boxes
  • 18. All coherence experiments to date show quantum beating in a single complex – Is quantum coherence relevant to long range energy transfer? Photosystem II super-complex, courtesy of Roberta Croce •  Is coherence transmitted between complexes? •  If so, why? How might it help photosynthetic function? Hoyer et al. PRE (2012) •  coherence is transmitted •  enables unidirectional transport •  enables uphill transport
  • 19. Photosynthesis: what next? •  fundamental understanding of quantum effects in efficient energy conversion for life, role in biology •  reengineer photosynthesis - design of artificial devices for effective ‘quantum’ conversion of sunlight into chemical energy without competing biological constraints •  lessons for design of robust and sensitive quantum devices an “evolved” natural quantum processor? design rules for robust quantum devices and efficient transduction of solar energy?
  • 20. Elysia chlorotica captures chloroplasts from algae and store these in body, never need to eat again (for 9-11 months of life)…. Green sea slug