Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Block 1
More Circle Stuff
What is to be learned?
• How to get the centre and radius from the
equation
(x – 3)2
+ (y + 4)2
= 36
centre (3 , -4) radius 6
x2
+ 4x + y2
– 6y = 20
x2
+ y2
+ 4x – 6y – 20 = 0
(x + 2)2
– 4 + (y – 3)2
– 9= 20
(x + 2)2
+ (y – 3)2
= 33
centre (-2, 3) radius √33
x2
+ y2
+ 4x – 6y – 20 = 0
÷(-2)
√(-2)2
+ 32
+ 20

rearrange
complete
square(x + 2)2
+ (y – 3)2
= 20 + 4 + 9
x2
+ y2
+ 4x – 6y – 20 = 0
x2
+ y2
+ 2gx + 2fy + c = 0
equating coefficients
x2
+ y2
+ 4x – 6y – 20 = 0
x2
+ y2
+ 2gx + 2fy + c = 0
equating coefficients
x2
+ y2
+ 4x – 6y – 20 = 0
x2
+ y2
+ 2gx + 2fy + c = 0
equating coefficients
2g = 4
x2
+ y2
+ 4x – 6y – 20 = 0
x2
+ y2
+ 2gx + 2fy + c = 0
equating coefficients
2g = 4 2f = -6 c = -20
g = 2, f = -3
centre (-2, 3)
centre (-g , -f) radius = √(g2
+ f2
– c)
= √(22
+ (-3)2
+ 20)
= √33
x2
+ y2
+ 8x – 4y + 16 = 0
x2
+ y2
+ 2gx + 2fy + c = 0
equating coefficients
2g = 8 2f = -4 c = 16
g = 4, f = -2
centre (-4, 2)
centre (-g , -f) radius = √(g2
+ f2
– c)
= √(42
+ (-2)2
– 16)
= √4
= 2
Getting Radius and Centre
If given equation of circle it is vital to find
centre and
radius
If no brackets use
x2
+ y2
+ 2gx + 2fy + c = 0
centre (-g , -f) radius = √(g2
+ f2
– c)
x2
+ y2
+ 8x – 4y – 10 = 0
x2
+ y2
+ 2gx + 2fy + c = 0
equating coefficients
2g = 8 2f = -4 c = -10
g = 4, f = -2
centre (-4, 2)
centre (-g , -f) radius = √(g2
+ f2
– c)
= √(42
+ (-2)2
+ 10)
= √30
x2
+ y2
– 10x + 2y = 14
x2
+ y2
+ 2gx + 2fy + c = 0
equating coefficients
2g = -10 2f = 2 c = -14
g = -5, f = 1
centre (5, -1)
centre (-g , -f) radius = √(g2
+ f2
– c)
= √((-5)2
+ 12
+ 14)
= √40
Key Question Find centre and radius
x2
+ y2
– 10x + 2y – 14 = 0

More Related Content

Circles getting centre and radius 13

  • 2. What is to be learned? • How to get the centre and radius from the equation
  • 3. (x – 3)2 + (y + 4)2 = 36 centre (3 , -4) radius 6 x2 + 4x + y2 – 6y = 20 x2 + y2 + 4x – 6y – 20 = 0 (x + 2)2 – 4 + (y – 3)2 – 9= 20 (x + 2)2 + (y – 3)2 = 33 centre (-2, 3) radius √33 x2 + y2 + 4x – 6y – 20 = 0 ÷(-2) √(-2)2 + 32 + 20  rearrange complete square(x + 2)2 + (y – 3)2 = 20 + 4 + 9
  • 4. x2 + y2 + 4x – 6y – 20 = 0 x2 + y2 + 2gx + 2fy + c = 0 equating coefficients
  • 5. x2 + y2 + 4x – 6y – 20 = 0 x2 + y2 + 2gx + 2fy + c = 0 equating coefficients
  • 6. x2 + y2 + 4x – 6y – 20 = 0 x2 + y2 + 2gx + 2fy + c = 0 equating coefficients 2g = 4
  • 7. x2 + y2 + 4x – 6y – 20 = 0 x2 + y2 + 2gx + 2fy + c = 0 equating coefficients 2g = 4 2f = -6 c = -20 g = 2, f = -3 centre (-2, 3) centre (-g , -f) radius = √(g2 + f2 – c) = √(22 + (-3)2 + 20) = √33
  • 8. x2 + y2 + 8x – 4y + 16 = 0 x2 + y2 + 2gx + 2fy + c = 0 equating coefficients 2g = 8 2f = -4 c = 16 g = 4, f = -2 centre (-4, 2) centre (-g , -f) radius = √(g2 + f2 – c) = √(42 + (-2)2 – 16) = √4 = 2
  • 9. Getting Radius and Centre If given equation of circle it is vital to find centre and radius If no brackets use x2 + y2 + 2gx + 2fy + c = 0 centre (-g , -f) radius = √(g2 + f2 – c)
  • 10. x2 + y2 + 8x – 4y – 10 = 0 x2 + y2 + 2gx + 2fy + c = 0 equating coefficients 2g = 8 2f = -4 c = -10 g = 4, f = -2 centre (-4, 2) centre (-g , -f) radius = √(g2 + f2 – c) = √(42 + (-2)2 + 10) = √30
  • 11. x2 + y2 – 10x + 2y = 14 x2 + y2 + 2gx + 2fy + c = 0 equating coefficients 2g = -10 2f = 2 c = -14 g = -5, f = 1 centre (5, -1) centre (-g , -f) radius = √(g2 + f2 – c) = √((-5)2 + 12 + 14) = √40 Key Question Find centre and radius x2 + y2 – 10x + 2y – 14 = 0