Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Company 
LOGO 
Video Lectures for MBA 
By: 
Video.edhole.com
Chapter 3 Steady-State Conduction Multiple Dimensions 
CUMT 
HEAT TRANSFER LECTURE 
CHAPER 3 
Steady-State Conduction 
Multiple Dimensions 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
3-1 Introduction 
In Chapter 2 steady-state heat transfer was calculated 
in systems in which the temperature gradient and area 
could be expressed in terms of one space coordinate. We 
now wish to analyze the more general case of two-dimensional 
heat flow. For steady state with no heat 
generation, the Laplace equation applies. 
2 2 
2 2 T T 0 
x y 
¶ + ¶ = 
¶ ¶ 
(3-1) 
The solution to this equation may be obtained by analytical, 
numerical, or graphical techniques. 
Video.edhole.com
HEAT TRANSFER LECTURE 
The objective of any heat-transfer analysis is usually to 
predict heat flow or the temperature that results from a 
certain heat flow. The solution to Equation (3-1) will give 
the temperature in a two-dimensional body as a function 
of the two independent space coordinates x and y. Then 
the heat flow in the x and y directions may be calculated 
from the Fourier equations 
CUMT 
3-1 Introduction 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
Analytical solutions of temperature distribution can be obtained 
for some simple geometry and boundary conditions. The 
separation method is an important one to apply. 
Consider a rectangular plate. 
Three sides are maintained at 
temperature T1, and the upper 
side has some temperature 
distribution impressed on it. 
The distribution can be a constant 
temperature or something more 
complex, such as a sine-wave. 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
Consider a sine-wave distribution on the upper edge, the 
boundary conditions are: 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
Substitute: 
2 2 
2 2 
1 T 1 T 
X x Y y 
- ¶ = ¶ 
¶ ¶ 
We obtain two ordinary differential equations in terms of 
this constant, 
2 
2 X X 0 
x 
¶ +l 2 
= 
¶ 
2 
2 Y Y 0 
y 
¶ -l 2 
= 
¶ 
where λ2 is called the separation constant. 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
We write down all possible solutions and then see which 
one fits the problem under consideration. 
For l = 0 : 
X = C + 
C x 
1 2 
Y = C + 
C y 
T = C + C x C + 
C y 
( ) ( ) 
2 
3 4 
1 2 3 4 
This function cannot fit the sine-function boundary 
condition, so that the l 2 = 0 solution may be excluded. 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
l l 
< = + 
Y C y C y 
T C e C e C y C y 
CUMT 
HEAT TRANSFER LECTURE 
For X C e C e 
= + 
= + + 
( ) ( ) 
2 
5 6 
7 8 
5 6 7 8 
0 : 
cos sin 
cos sin 
x x 
x x 
l l 
l 
l l 
l l 
- 
- 
This function cannot fit the sine-function boundary condition, 
so that the l 2 < 0 solution may be excluded. 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
= + 
= + + 
y y 
l > = l + 
l 
Y l l 
- 
l l 
- 
T C x C x C e C e 
CUMT 
HEAT TRANSFER LECTURE 
For 0 : X C cos x C sin 
x 
y y 
C e C e 
( ) ( ) 
2 
9 10 
11 12 
l l 
cos sin 
9 10 11 12 
It is possible to satisfy the sine-function boundary condition; 
so we shall attempt to satisfy the other condition. 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
Let 
The equation becomes: 
Apply the method of variable separation, let 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
And the boundary conditions become: 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
Applying these conditions,we have: 
0 = ( C9 cosl x +C10 sinl x) ( C11 +C12 ) 
( ) 9 11 12 0 = C C e-l y +C el y 
( ) ( ) 9 10 11 12 0 = C coslW +C sinlW C e-l y +C el y 
( ) ( ) 9 10 11 12 sin cos sin H H 
T x C x C x C e C e 
m 
æçp ö¸= l + l -l + l è W 
ø 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
accordingly, 
and from (c), 
This requires that 
C11 = -C12 
9 C = 0 
( ) 10 12 0 = C C sinlW el y - e-l y 
sinlW = 0 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
then 
We get 
T T C n x n y 
q p p 
= - =å 
The final boundary condition may now be applied: 
p x ¥ T C n p x n p 
H 
=å 
sin sin sinh m n 
W W W 
which requires that Cn =0 for n >1. 
n 
W 
l = p 
1 
1 
sin sinh n 
n 
W W 
¥ 
= 
1 
n 
= 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
The final solution is therefore 
( ) 
( ) 1 
y W x T T T 
p p 
p 
sinh / 
= + 
sin 
m sinh / 
H W W 
The temperature field for this problem is shown. Note that the heat-flow 
lines are perpendicular to the isotherms. 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
Another set of boundary conditions 
y 
x 
x W 
q 
q 
q 
q p 
= 0 at = 
0 
= 0 at = 
0 
= 0 at 
= 
= sin æ ö at = m 
çè ø¸ 
T x y H 
W 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
Using the first three boundary conditions, we obtain the 
solution in the form of Equation: 
T T C n x n y 
1 
¥ p p 
= 
1 
sin sinh n 
n 
W W 
- =å 
Applying the fourth boundary condition gives 
T T C n x n H 
2 1 
¥ p p 
= 
1 
sin sinh n 
n 
W W 
- =å 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
This series is 
then 
( ) ( ) 1 
T T T T n x 
2 1 2 1 
2 1 1sin 
1 
n 
n 
p 
n W 
p 
¥ + 
= 
- + 
- = - å 
+ - + 
2 1 1 1 
( ) ( ) 
( ) 1 
= - 
2 1 
sinh / 
n 
n C T T 
p np H W n 
The final solution is expressed as 
( ) ( ) 
¥ + 
T - T 2 å 
- 1 + 1 sinh n y / W 
= 
sin 
n x T - T n W n H W 
( ) 
1 
1 
2 1 1 
sinh / 
n 
n 
p p 
p p 
= 
Video.edhole.com
3-2 Mathematical Analysis of Two-Dimensional Heat Conduction 
CUMT 
HEAT TRANSFER LECTURE 
Transform the boundary condition: 
y 
x 
x W 
q 
q 
q 
q p 
= 0 at = 
0 
= 0 at = 
0 
= 0 at 
= 
= sin æ ö at = m 
çè ø¸ 
T x y H 
W 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
3-3 Graphical Analysis 
neglect 
Video.edhole.com
CUMT 
3-4 The Conduction Shape Factor 
HEAT TRANSFER LECTURE 
Consider a general one dimensional heat conduct-ion 
problem, from Fourier’s Law: 
let 
then 
Videow.ehdheorlee.c:om S is called shape factor.
CUMT 
3-4 The Conduction Shape Factor 
HEAT TRANSFER LECTURE 
Note that the inverse hyperbolic cosine can be calculated from 
cosh-1 x = ln ( x ± x2 -1) 
For a three-dimensional wall, as in a furnace, separate shape 
factors are used to calculate the heat flow through the edge and 
corner sections, with the dimensions shown in Figure 3-4. when all 
the interior dimensions are greater than one fifth of the thickness, 
S A 
wall 
= edge S = 0.54D corner S = 0.15L 
L 
where A = area of wall, L = wall thickness, D = length of edge 
Video.edhole.com
CUMT 
3-4 The Conduction Shape Factor 
HEAT TRANSFER LECTURE 
Video.edhole.com
CUMT 
3-4 The Conduction Shape Factor 
HEAT TRANSFER LECTURE 
Video.edhole.com
CUMT 
3-4 The Conduction Shape Factor 
HEAT TRANSFER LECTURE 
Video.edhole.com
CUMT 
3-4 The Conduction Shape Factor 
HEAT TRANSFER LECTURE 
Video.edhole.com
CUMT 
3-4 The Conduction Shape Factor 
HEAT TRANSFER LECTURE 
Video.edhole.com
CUMT 
3-4 The Conduction Shape Factor 
HEAT TRANSFER LECTURE 
Video.edhole.com
CUMT 
3-4 The Conduction Shape Factor 
HEAT TRANSFER LECTURE 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
Example 3-1 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
Example 3-2 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
Example 3-3 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
Example 3-4 
Video.edhole.com
CUMT 
3-5 Numerical Method of Analysis 
HEAT TRANSFER LECTURE 
The most fruitful approach to the heat conduction is one 
based on finite-difference techniques, the basic principles 
of which we shall outline in this section. 
Video.edhole.com
CUMT 
3-5 Numerical Method of Analysis 
HEAT TRANSFER LECTURE 
1、Discretization of the solving 
Video.edhole.com
3-5 Numerical Method of Analysis 
T T x T x T x T 
= + D ¶ + D ¶ + D ¶ + 
( ) ( ) ... 
+ ¶ x ¶ x ¶ 
x 
m n m n m n 
T T x T x T x T 
= - D ¶ + D ¶ - D ¶ + 
( ) ( ) ... 
CUMT 
HEAT TRANSFER LECTURE 
2、Discrete equation 
Taylor series expansion 
2 2 3 3 
m n m n 2 6 
1, , 2 3 
, , , 
2 2 3 3 
m n m n 2 6 
- x x x 
1, , 2 3 
¶ ¶ ¶ 
m , n m , n m , 
n 
Video.edhole.com
CUMT 
3-5 Numerical Method of Analysis 
HEAT TRANSFER LECTURE 
2 
2、Discrete equation 
+ = + D 2 
¶ + 
2 ( ) ... m n m n m n 
1, 1, , 2 
m , 
n 
T T T x T 
+ - ¶ 
x 
T T T T o x 
x x 
¶ 2 
- + = m + n m n m - n 
+ D 
¶ D 
1, , 1, 2 
2 2 
, 
2 
( ) 
( ) 
m n 
2 
T - 2 
T + 
T 
T m n m n m n 
¶ + - 
, 1 , , 1 
2 
, 
2 
2 
( ) 
( ) 
o y 
y 
y 
m n 
+ D 
D 
= 
¶ 
Differential equation for two-dimensional steady-state heat flow 
· 
2 2 
2 2 T T q 0 
x y k 
¶ + ¶ + = 
¶ ¶ 
Video.edhole.com
CUMT 
3-5 Numerical Method of Analysis 
HEAT TRANSFER LECTURE 
2、Discrete equation 
Discrete equation at nodal point (m,n) 
· 
T - 2 T + T T - 2 
T + 
T m + 1, n m , n m - 1, n + m , n + 1 m , n m , n - 1 
+ q 
= 
0 2 2 
x y k 
D D 
no heat generation 
T - 2 T + T T - 2 
T + 
T 
m + 1, n m , n m - 1, n + m , n + 1 m , n m , n - 1 
= 
0 2 2 
x y 
D D 
Δx= Δy 
1, 1, , 1 , 1 , 4 0 m n m n m n m n m n T T T T T + - + - + + + - = 
Video.edhole.com
3-5 Numerical Method of Analysis 
D + D + D + D = 
CUMT 
HEAT TRANSFER LECTURE 
2、Discrete equation 
Thermal balance 
(1) Interior points 
steady-state & no heat 
generation 
1, 1, , 1 , 1 0 m n m n m n m n q q q q - + + - + + + = 
T T T q kA k y 
- 
1, , 
1, 
d 
d 
m n m n 
m n 
x x 
- 
- 
= - = D 
D 
T - 
T 
q k y m n m n 
m n D 
x 
= D + 
+ 
1, , 
1, 
, 1 , 
, 1 
m n m n 
m n 
T T 
q k x 
y 
+ 
+ 
- 
= D 
D 
, 1 , 
, 1 
m n m n 
m n 
T T 
q k x 
y 
- 
- 
- 
= D 
D 
T - T T - T T - T T - 
T 
k y m - 1,n m,n k y m + 1,n m,n k x m,n + 1 m,n k x 
m,n - 1 m,n 0 Video.edhole.com 
x x y y 
D D D D
CUMT 
3-5 Numerical Method of Analysis 
HEAT TRANSFER LECTURE 
Thermal balance 
(1) Interior points 
Δx= Δy 
1, 1, , 1 , 1 , 4 0 m n m n m n m n m n T T T T T + - + - + + + - = 
· · 
= ´ = ´D D 
gen q q V q x y 
2 
· 
T T T T T q x 
+ - + - + + + - + D = 
1, 1, , 1 , 1 , 4 ( ) 0 m n m n m n m n m n 
k 
steady-state with heat generation 
Video.edhole.com
CUMT 
3-5 Numerical Method of Analysis 
HEAT TRANSFER LECTURE 
2、Discrete equation 
Thermal balance 
(2) boundary 
points 
1, , 
1, 
m n m n 
m n 
T T 
q k y 
x 
- 
- 
- 
= D 
D 
x T T q k 
, 1 , 
, 1 2 
m n m n 
m n 
y 
+ 
+ 
D - = 
D 
x T T q k 
, 1 , 
, 1 2 
m n m n 
m n 
y 
- 
- 
D - = 
D 
, ( ) w m n q h y T T¥ = ´D ´ - 
T T T T T T k y m - 1, n m , n k x m , n + 1 m , n k x m , n - 
1 m , 
n 
h y T T 
, ( ) 
2 2 
m n 
Video.edhole.com 
x y y 
¥ 
- D - D - D + + = ´D ´ - 
D D D
CUMT 
3-5 Numerical Method of Analysis 
HEAT TRANSFER LECTURE 
Thermal balance 
(2) boundary 
points 
Δx= Δy 
h ´D x + T = T + T + T + h ´D 
x T 
k - + - k ¥ 
( 2) 1 ( ) 
m n 2 m n m n m n 
, 1, , 1 , 1 
D y T - T T - T k m - 1, n m , n + k D x m , n - 
1 m , 
n 
= h ´ D x ´ T - T + h ´ D y ´ T - 
T 
( ) ( ) 
m , n m , n 
x y 
¥ ¥ 
D D 
2 2 2 2 
h ´D x + T = T + T + h ´D 
x T 
k - - k ¥ 
( 1) 1 ( ) 
m n 2 m n m n 
, 1, , 1 
Δx= Δy 
Video.edhole.com
CUMT 
3-5 Numerical Method of Analysis 
HEAT TRANSFER LECTURE 
Thermal balance 
(2) boundary 
points 
T - T T - T T - T k D y + k D y + 
k 
D x m - 1, n m , n m + 1, n m , n m , n - 
1 m , 
n 
x x y 
D D D 
- D D + D = ´ ´ - + ´ ´ - 
T T k x , 1 , 
h x T T h y T T 
Δx= Δy 
2 2 
( ) ( ) 
, , 
2 2 
m n m n 
m n m n 
y 
+ 
¥ ¥ 
D 
h ´D x + T = T + T + T + T + h ´D 
x T 
k - + - + k ¥ 
( 3) 1 (2 2 ) 
m n 2 m n m n m n m n 
, 1, 1, , 1 , 1 
Video.edhole.com
CUMT 
3-5 Numerical Method of Analysis 
HEAT TRANSFER LECTURE 
3、Algebraic equation 
a T + a T + + a T = 
C 
a T + a T + + a T = 
C 
11 1 12 2 1 1 
21 1 22 2 2 2 
a T + a T + + a T = 
C 
1 1 2 2 
...... 
...... 
............................................ 
...... 
n n 
n n 
n n nn n n 
Video.edhole.com
3-5 Numerical Method of Analysis 
é ù 
ê ú 
= ê ú 
ê ú 
ê ú 
ë û 
CUMT 
HEAT TRANSFER LECTURE 
Matrix notation 
[ ] 
a a a 
a a a 
é ê 11 12 1 
ù 
ú 
= ê 21 22 2 
ú 
ê ú 
ê ú 
ë 1 2 
û 
... 
... 
... ... ... ... 
... 
n 
n 
n n nn 
A 
a a a 
[ ] 
T 
T 
é ê 1 
ù 
ú 
= ê 2 
ú 
ê ... 
ú 
ê ú 
ë n 
û 
T 
T 
[ ] 
C 
C 
1 
2 
... 
n 
C 
C 
[ A] [T ] =[C] 
Iteration 
Simple Iteration & Gauss-Seidel Iteration 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
Example 3-5 
Consider the square shown in the figure. The left face is 
maintained at 100 ℃ and the top face at 500℃, while the 
other two faces are exposed to a environment at 100℃. 
h=10W/m2·℃ and k=10W/m·℃. The block is 1 m square. 
Compute the temperature of the various nodes as indicated 
in the figure and heat flows at the boundaries. 
Video.edhole.com
CUMT 
Example 3-5 
HEAT TRANSFER LECTURE 
[Solution] 
The equations for nodes 1,2,4,5 are given by 
T T T 
+ + + - = 
+ + + - = 
+ + + - = 
+ + + - = 
500 100 4 0 
2 4 1 
500 T T T 4 T 
0 
1 3 5 2 
100 T T T 4 T 
0 
1 5 7 4 
T T T T T 
4 0 
2 4 6 8 5 
Video.edhole.com
CUMT 
Example 3-5 
HEAT TRANSFER LECTURE 
[Solution] 
Equations for nodes 3,6,7,8 are 
2 1 T = 1 (500 + 2 T + T 
) + 1 ´ 
100 
3 3 2 2 6 
3 
2 1 T = 1 ( T + 2 T + T 
) + 1 ´ 
100 
3 6 2 3 5 9 
3 
2 1 T = 1 (100 + 2 T + T 
) + 1 ´ 
100 
3 7 2 4 8 
3 
2 1 T = 1 ( T + 2 T + T 
) + 1 ´ 
100 
3 8 2 7 5 9 
3 
The equation for node 9 is 
11 T = 1 ( T +T ) + 1 ´ 
100 
3 9 2 6 8 
3 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
Example 3-5 
2 1 T = 1 (500 + 2 T +T ) + 1 ´ 
100 
3 3 2 2 6 
3 
2 1 T = 1 ( T + 2 T +T ) + 1 ´ 
100 
3 6 2 3 5 9 
3 
2 1 T = 1 (100 + 2 T +T ) + 1 ´ 
100 
3 7 2 4 8 
3 
2 1 T = 1 ( T + 2 T +T ) + 1 ´ 
100 
3 8 2 7 5 9 
3 
The equation for node 9 is 
11 T = 1 ( T +T ) + 1 ´ 
100 
3 9 2 6 8 
3 
Video.edhole.com
HEAT TRANSFER LECTURE 
We thus have nine equations and nine unknown nodal temperatures. So 
the answer is 
CUMT 
For the 500℃ face, the heat flow into the face is 
q = k ´ A ´D T = ´ D x ´ - T + D x ´ - T + D x ´ - 
T 
1 2 3 10 [ (500 ) (500 ) (500 )] 
D y D y D y 2 
D 
y 
W m 
in 
å 
= = 
... 4843.4 / 
The heat flow out of the 100℃ face is 
q k A T y T y T y T 
= ´ ´D = ´ D ´ - + D ´ - + D ´ - 
1 4 7 
1 
10 [ ( 100) ( 100) ( 100)] 
D D D D 
2 
å 
... 3019 / 
x x x x 
W m 
= = 
Example 3-5 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
Example 3-5 
The heat flow out the right face is 
å 
q h A T T 
= ´ ´ ( - 
) 
2 
¥ = ´ D y ´ T - + D y ´ T - + D y ´ T 
- 
= = 
10 [ ( 100) ( 100) ( 100)] 
3 6 9 
2 
W m 
... 1214.6 / 
The heat flow out the bottom face is 
å 
q h A T T 
= ´ ´ ( - 
) 
3 
¥ = ´ D ´ - + D ´ - + D ´ - 
= = 
y T y T y T 
W m 
10 [ ( 100) ( 100) ( 100)] 
7 8 9 
2 
... 600.7 / 
The total heat flow out is 
1 2 3 ... 4834.3 / out q = q + q + q = = W m 4843.4 / in <q = W m 
Video.edhole.com
3-6 Numerical Formulation in Terms of Resistance Elements 
CUMT 
HEAT TRANSFER LECTURE 
Thermal balance — the net heat input to node i must be zero 
T - 
T 
+å = 
j i 0 
i 
j i j 
q 
R 
qi — heat generation, radiation, etc. 
i — solving node 
j — adjoining node 
Video.edhole.com
3-6 Numerical Formulation in Terms of Resistance Elements 
CUMT 
HEAT TRANSFER LECTURE 
R = D 
x 
kA 
T - 
T 
+å = 
j i 0 
q 
i 
R 
j i j 
T - T T - T T - T T - 
T 
m - 1,n m,n + m + 1,n m,n + m,n - 1 m,n + m,n + 
1 m,n = 
0 
R R R R 
m m n n 
- + - + 
1, 1, , 1 , 1 , 4 0 m n m n m n m n m n T T T T T + - + - + + + - = 
1 
m m n n R R R R 
- + - + k = = = = 
so 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
3-7 Gauss-Seidel Iteration 
T - 
T 
+å = 
j i 0 
i 
j i j 
q 
R 
q T R 
( / ) 
(1/ ) 
i j i j 
j 
i 
i j 
j 
T 
R 
+ 
= 
å 
å 
Steps 
Assumed initial set of values for Ti ; 
Calculated Ti according to the equation ; 
—using the most recent values of the Ti 
Repeated the process until converged. 
Video.edhole.com
3-7 Gauss-Seidel Iteration 
+ e - 
£ e =10-3~10-6 
CUMT 
HEAT TRANSFER LECTURE 
Convergence Criterion 
T T 
i n i n 
i(n 1) i(n) T T d + - £ ( 1) ( ) 
i n 
( ) 
T 
Biot number 
Bi = h D 
x 
k 
Video.edhole.com
Apply the Gauss-Seidel technique to obtain the nodal temperature 
for the four nodes in the figure. 
[Solution] 
All the connection resistance between 
the nodes are equal, that is 
CUMT 
HEAT TRANSFER LECTURE 
Example 3-6 
R = D x = 
1 
k D 
y k 
Therefore, we have 
å å å 
å å å Video.edhole.com 
q + T R q + 
k T k T 
( / ) ( ) ( ) 
(1/ ) ( ) ( ) 
i j i j i j j j j 
j j j 
i 
= = = 
i j j j 
j j j 
T 
R k k
CUMT 
HEAT TRANSFER LECTURE 
Example 3-6 
Because each node has four resistance connected to it and k is assumed 
constant, so 
åk = 4 k 1 
j 
j 
T = åT 
i 4 j 
j 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
3-8 Accuracy Consideration 
Truncation Error — Influenced by difference scheme 
Discrete Error — Influenced by truncation error & △x 
Round-off Error — Influenced by △x 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
Summary 
(1)Numerical Method 
Solving Zone 
Nodal equations 
thermal balance method — Interior & boundary point 
Algebraic equations 
q T R 
Gauss-Seidel iteration 
( / ) 
(1/ ) 
i j i j 
j 
i 
i j 
j 
T 
R 
+ 
= 
å 
å 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
Summary 
(2)Resistance Forms 
T - 
T 
+å = 
j i 0 
i 
j i j 
q 
R 
(3)Convergence 
Convergence Criterion 
i(n 1) i(n) T T d + - £ 
i(n 1) i(n) T T d + - £ 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
Summary 
(4)Accuracy 
Truncation Error 
Discrete Error 
Round-off Error 
Important conceptions 
Nodal equations — thermal balance method 
Calculated temperature & heat flow 
Convergence criterion 
How to improve accuracy 
Video.edhole.com
CUMT 
HEAT TRANSFER LECTURE 
Exercises 
Exercises: 3-16, 3-24, 3-48, 3-59 
Video.edhole.com

More Related Content

Free video lecture in india

  • 1. Company LOGO Video Lectures for MBA By: Video.edhole.com
  • 2. Chapter 3 Steady-State Conduction Multiple Dimensions CUMT HEAT TRANSFER LECTURE CHAPER 3 Steady-State Conduction Multiple Dimensions Video.edhole.com
  • 3. CUMT HEAT TRANSFER LECTURE 3-1 Introduction In Chapter 2 steady-state heat transfer was calculated in systems in which the temperature gradient and area could be expressed in terms of one space coordinate. We now wish to analyze the more general case of two-dimensional heat flow. For steady state with no heat generation, the Laplace equation applies. 2 2 2 2 T T 0 x y ¶ + ¶ = ¶ ¶ (3-1) The solution to this equation may be obtained by analytical, numerical, or graphical techniques. Video.edhole.com
  • 4. HEAT TRANSFER LECTURE The objective of any heat-transfer analysis is usually to predict heat flow or the temperature that results from a certain heat flow. The solution to Equation (3-1) will give the temperature in a two-dimensional body as a function of the two independent space coordinates x and y. Then the heat flow in the x and y directions may be calculated from the Fourier equations CUMT 3-1 Introduction Video.edhole.com
  • 5. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE Analytical solutions of temperature distribution can be obtained for some simple geometry and boundary conditions. The separation method is an important one to apply. Consider a rectangular plate. Three sides are maintained at temperature T1, and the upper side has some temperature distribution impressed on it. The distribution can be a constant temperature or something more complex, such as a sine-wave. Video.edhole.com
  • 6. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE Consider a sine-wave distribution on the upper edge, the boundary conditions are: Video.edhole.com
  • 7. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE Substitute: 2 2 2 2 1 T 1 T X x Y y - ¶ = ¶ ¶ ¶ We obtain two ordinary differential equations in terms of this constant, 2 2 X X 0 x ¶ +l 2 = ¶ 2 2 Y Y 0 y ¶ -l 2 = ¶ where λ2 is called the separation constant. Video.edhole.com
  • 8. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE We write down all possible solutions and then see which one fits the problem under consideration. For l = 0 : X = C + C x 1 2 Y = C + C y T = C + C x C + C y ( ) ( ) 2 3 4 1 2 3 4 This function cannot fit the sine-function boundary condition, so that the l 2 = 0 solution may be excluded. Video.edhole.com
  • 9. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction l l < = + Y C y C y T C e C e C y C y CUMT HEAT TRANSFER LECTURE For X C e C e = + = + + ( ) ( ) 2 5 6 7 8 5 6 7 8 0 : cos sin cos sin x x x x l l l l l l l - - This function cannot fit the sine-function boundary condition, so that the l 2 < 0 solution may be excluded. Video.edhole.com
  • 10. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction = + = + + y y l > = l + l Y l l - l l - T C x C x C e C e CUMT HEAT TRANSFER LECTURE For 0 : X C cos x C sin x y y C e C e ( ) ( ) 2 9 10 11 12 l l cos sin 9 10 11 12 It is possible to satisfy the sine-function boundary condition; so we shall attempt to satisfy the other condition. Video.edhole.com
  • 11. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE Let The equation becomes: Apply the method of variable separation, let Video.edhole.com
  • 12. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE And the boundary conditions become: Video.edhole.com
  • 13. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE Applying these conditions,we have: 0 = ( C9 cosl x +C10 sinl x) ( C11 +C12 ) ( ) 9 11 12 0 = C C e-l y +C el y ( ) ( ) 9 10 11 12 0 = C coslW +C sinlW C e-l y +C el y ( ) ( ) 9 10 11 12 sin cos sin H H T x C x C x C e C e m æçp ö¸= l + l -l + l è W ø Video.edhole.com
  • 14. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE accordingly, and from (c), This requires that C11 = -C12 9 C = 0 ( ) 10 12 0 = C C sinlW el y - e-l y sinlW = 0 Video.edhole.com
  • 15. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE then We get T T C n x n y q p p = - =å The final boundary condition may now be applied: p x ¥ T C n p x n p H =å sin sin sinh m n W W W which requires that Cn =0 for n >1. n W l = p 1 1 sin sinh n n W W ¥ = 1 n = Video.edhole.com
  • 16. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE The final solution is therefore ( ) ( ) 1 y W x T T T p p p sinh / = + sin m sinh / H W W The temperature field for this problem is shown. Note that the heat-flow lines are perpendicular to the isotherms. Video.edhole.com
  • 17. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE Another set of boundary conditions y x x W q q q q p = 0 at = 0 = 0 at = 0 = 0 at = = sin æ ö at = m çè ø¸ T x y H W Video.edhole.com
  • 18. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE Using the first three boundary conditions, we obtain the solution in the form of Equation: T T C n x n y 1 ¥ p p = 1 sin sinh n n W W - =å Applying the fourth boundary condition gives T T C n x n H 2 1 ¥ p p = 1 sin sinh n n W W - =å Video.edhole.com
  • 19. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE This series is then ( ) ( ) 1 T T T T n x 2 1 2 1 2 1 1sin 1 n n p n W p ¥ + = - + - = - å + - + 2 1 1 1 ( ) ( ) ( ) 1 = - 2 1 sinh / n n C T T p np H W n The final solution is expressed as ( ) ( ) ¥ + T - T 2 å - 1 + 1 sinh n y / W = sin n x T - T n W n H W ( ) 1 1 2 1 1 sinh / n n p p p p = Video.edhole.com
  • 20. 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction CUMT HEAT TRANSFER LECTURE Transform the boundary condition: y x x W q q q q p = 0 at = 0 = 0 at = 0 = 0 at = = sin æ ö at = m çè ø¸ T x y H W Video.edhole.com
  • 21. CUMT HEAT TRANSFER LECTURE 3-3 Graphical Analysis neglect Video.edhole.com
  • 22. CUMT 3-4 The Conduction Shape Factor HEAT TRANSFER LECTURE Consider a general one dimensional heat conduct-ion problem, from Fourier’s Law: let then Videow.ehdheorlee.c:om S is called shape factor.
  • 23. CUMT 3-4 The Conduction Shape Factor HEAT TRANSFER LECTURE Note that the inverse hyperbolic cosine can be calculated from cosh-1 x = ln ( x ± x2 -1) For a three-dimensional wall, as in a furnace, separate shape factors are used to calculate the heat flow through the edge and corner sections, with the dimensions shown in Figure 3-4. when all the interior dimensions are greater than one fifth of the thickness, S A wall = edge S = 0.54D corner S = 0.15L L where A = area of wall, L = wall thickness, D = length of edge Video.edhole.com
  • 24. CUMT 3-4 The Conduction Shape Factor HEAT TRANSFER LECTURE Video.edhole.com
  • 25. CUMT 3-4 The Conduction Shape Factor HEAT TRANSFER LECTURE Video.edhole.com
  • 26. CUMT 3-4 The Conduction Shape Factor HEAT TRANSFER LECTURE Video.edhole.com
  • 27. CUMT 3-4 The Conduction Shape Factor HEAT TRANSFER LECTURE Video.edhole.com
  • 28. CUMT 3-4 The Conduction Shape Factor HEAT TRANSFER LECTURE Video.edhole.com
  • 29. CUMT 3-4 The Conduction Shape Factor HEAT TRANSFER LECTURE Video.edhole.com
  • 30. CUMT 3-4 The Conduction Shape Factor HEAT TRANSFER LECTURE Video.edhole.com
  • 31. CUMT HEAT TRANSFER LECTURE Example 3-1 Video.edhole.com
  • 32. CUMT HEAT TRANSFER LECTURE Example 3-2 Video.edhole.com
  • 33. CUMT HEAT TRANSFER LECTURE Example 3-3 Video.edhole.com
  • 34. CUMT HEAT TRANSFER LECTURE Example 3-4 Video.edhole.com
  • 35. CUMT 3-5 Numerical Method of Analysis HEAT TRANSFER LECTURE The most fruitful approach to the heat conduction is one based on finite-difference techniques, the basic principles of which we shall outline in this section. Video.edhole.com
  • 36. CUMT 3-5 Numerical Method of Analysis HEAT TRANSFER LECTURE 1、Discretization of the solving Video.edhole.com
  • 37. 3-5 Numerical Method of Analysis T T x T x T x T = + D ¶ + D ¶ + D ¶ + ( ) ( ) ... + ¶ x ¶ x ¶ x m n m n m n T T x T x T x T = - D ¶ + D ¶ - D ¶ + ( ) ( ) ... CUMT HEAT TRANSFER LECTURE 2、Discrete equation Taylor series expansion 2 2 3 3 m n m n 2 6 1, , 2 3 , , , 2 2 3 3 m n m n 2 6 - x x x 1, , 2 3 ¶ ¶ ¶ m , n m , n m , n Video.edhole.com
  • 38. CUMT 3-5 Numerical Method of Analysis HEAT TRANSFER LECTURE 2 2、Discrete equation + = + D 2 ¶ + 2 ( ) ... m n m n m n 1, 1, , 2 m , n T T T x T + - ¶ x T T T T o x x x ¶ 2 - + = m + n m n m - n + D ¶ D 1, , 1, 2 2 2 , 2 ( ) ( ) m n 2 T - 2 T + T T m n m n m n ¶ + - , 1 , , 1 2 , 2 2 ( ) ( ) o y y y m n + D D = ¶ Differential equation for two-dimensional steady-state heat flow · 2 2 2 2 T T q 0 x y k ¶ + ¶ + = ¶ ¶ Video.edhole.com
  • 39. CUMT 3-5 Numerical Method of Analysis HEAT TRANSFER LECTURE 2、Discrete equation Discrete equation at nodal point (m,n) · T - 2 T + T T - 2 T + T m + 1, n m , n m - 1, n + m , n + 1 m , n m , n - 1 + q = 0 2 2 x y k D D no heat generation T - 2 T + T T - 2 T + T m + 1, n m , n m - 1, n + m , n + 1 m , n m , n - 1 = 0 2 2 x y D D Δx= Δy 1, 1, , 1 , 1 , 4 0 m n m n m n m n m n T T T T T + - + - + + + - = Video.edhole.com
  • 40. 3-5 Numerical Method of Analysis D + D + D + D = CUMT HEAT TRANSFER LECTURE 2、Discrete equation Thermal balance (1) Interior points steady-state & no heat generation 1, 1, , 1 , 1 0 m n m n m n m n q q q q - + + - + + + = T T T q kA k y - 1, , 1, d d m n m n m n x x - - = - = D D T - T q k y m n m n m n D x = D + + 1, , 1, , 1 , , 1 m n m n m n T T q k x y + + - = D D , 1 , , 1 m n m n m n T T q k x y - - - = D D T - T T - T T - T T - T k y m - 1,n m,n k y m + 1,n m,n k x m,n + 1 m,n k x m,n - 1 m,n 0 Video.edhole.com x x y y D D D D
  • 41. CUMT 3-5 Numerical Method of Analysis HEAT TRANSFER LECTURE Thermal balance (1) Interior points Δx= Δy 1, 1, , 1 , 1 , 4 0 m n m n m n m n m n T T T T T + - + - + + + - = · · = ´ = ´D D gen q q V q x y 2 · T T T T T q x + - + - + + + - + D = 1, 1, , 1 , 1 , 4 ( ) 0 m n m n m n m n m n k steady-state with heat generation Video.edhole.com
  • 42. CUMT 3-5 Numerical Method of Analysis HEAT TRANSFER LECTURE 2、Discrete equation Thermal balance (2) boundary points 1, , 1, m n m n m n T T q k y x - - - = D D x T T q k , 1 , , 1 2 m n m n m n y + + D - = D x T T q k , 1 , , 1 2 m n m n m n y - - D - = D , ( ) w m n q h y T T¥ = ´D ´ - T T T T T T k y m - 1, n m , n k x m , n + 1 m , n k x m , n - 1 m , n h y T T , ( ) 2 2 m n Video.edhole.com x y y ¥ - D - D - D + + = ´D ´ - D D D
  • 43. CUMT 3-5 Numerical Method of Analysis HEAT TRANSFER LECTURE Thermal balance (2) boundary points Δx= Δy h ´D x + T = T + T + T + h ´D x T k - + - k ¥ ( 2) 1 ( ) m n 2 m n m n m n , 1, , 1 , 1 D y T - T T - T k m - 1, n m , n + k D x m , n - 1 m , n = h ´ D x ´ T - T + h ´ D y ´ T - T ( ) ( ) m , n m , n x y ¥ ¥ D D 2 2 2 2 h ´D x + T = T + T + h ´D x T k - - k ¥ ( 1) 1 ( ) m n 2 m n m n , 1, , 1 Δx= Δy Video.edhole.com
  • 44. CUMT 3-5 Numerical Method of Analysis HEAT TRANSFER LECTURE Thermal balance (2) boundary points T - T T - T T - T k D y + k D y + k D x m - 1, n m , n m + 1, n m , n m , n - 1 m , n x x y D D D - D D + D = ´ ´ - + ´ ´ - T T k x , 1 , h x T T h y T T Δx= Δy 2 2 ( ) ( ) , , 2 2 m n m n m n m n y + ¥ ¥ D h ´D x + T = T + T + T + T + h ´D x T k - + - + k ¥ ( 3) 1 (2 2 ) m n 2 m n m n m n m n , 1, 1, , 1 , 1 Video.edhole.com
  • 45. CUMT 3-5 Numerical Method of Analysis HEAT TRANSFER LECTURE 3、Algebraic equation a T + a T + + a T = C a T + a T + + a T = C 11 1 12 2 1 1 21 1 22 2 2 2 a T + a T + + a T = C 1 1 2 2 ...... ...... ............................................ ...... n n n n n n nn n n Video.edhole.com
  • 46. 3-5 Numerical Method of Analysis é ù ê ú = ê ú ê ú ê ú ë û CUMT HEAT TRANSFER LECTURE Matrix notation [ ] a a a a a a é ê 11 12 1 ù ú = ê 21 22 2 ú ê ú ê ú ë 1 2 û ... ... ... ... ... ... ... n n n n nn A a a a [ ] T T é ê 1 ù ú = ê 2 ú ê ... ú ê ú ë n û T T [ ] C C 1 2 ... n C C [ A] [T ] =[C] Iteration Simple Iteration & Gauss-Seidel Iteration Video.edhole.com
  • 47. CUMT HEAT TRANSFER LECTURE Example 3-5 Consider the square shown in the figure. The left face is maintained at 100 ℃ and the top face at 500℃, while the other two faces are exposed to a environment at 100℃. h=10W/m2·℃ and k=10W/m·℃. The block is 1 m square. Compute the temperature of the various nodes as indicated in the figure and heat flows at the boundaries. Video.edhole.com
  • 48. CUMT Example 3-5 HEAT TRANSFER LECTURE [Solution] The equations for nodes 1,2,4,5 are given by T T T + + + - = + + + - = + + + - = + + + - = 500 100 4 0 2 4 1 500 T T T 4 T 0 1 3 5 2 100 T T T 4 T 0 1 5 7 4 T T T T T 4 0 2 4 6 8 5 Video.edhole.com
  • 49. CUMT Example 3-5 HEAT TRANSFER LECTURE [Solution] Equations for nodes 3,6,7,8 are 2 1 T = 1 (500 + 2 T + T ) + 1 ´ 100 3 3 2 2 6 3 2 1 T = 1 ( T + 2 T + T ) + 1 ´ 100 3 6 2 3 5 9 3 2 1 T = 1 (100 + 2 T + T ) + 1 ´ 100 3 7 2 4 8 3 2 1 T = 1 ( T + 2 T + T ) + 1 ´ 100 3 8 2 7 5 9 3 The equation for node 9 is 11 T = 1 ( T +T ) + 1 ´ 100 3 9 2 6 8 3 Video.edhole.com
  • 50. CUMT HEAT TRANSFER LECTURE Example 3-5 2 1 T = 1 (500 + 2 T +T ) + 1 ´ 100 3 3 2 2 6 3 2 1 T = 1 ( T + 2 T +T ) + 1 ´ 100 3 6 2 3 5 9 3 2 1 T = 1 (100 + 2 T +T ) + 1 ´ 100 3 7 2 4 8 3 2 1 T = 1 ( T + 2 T +T ) + 1 ´ 100 3 8 2 7 5 9 3 The equation for node 9 is 11 T = 1 ( T +T ) + 1 ´ 100 3 9 2 6 8 3 Video.edhole.com
  • 51. HEAT TRANSFER LECTURE We thus have nine equations and nine unknown nodal temperatures. So the answer is CUMT For the 500℃ face, the heat flow into the face is q = k ´ A ´D T = ´ D x ´ - T + D x ´ - T + D x ´ - T 1 2 3 10 [ (500 ) (500 ) (500 )] D y D y D y 2 D y W m in å = = ... 4843.4 / The heat flow out of the 100℃ face is q k A T y T y T y T = ´ ´D = ´ D ´ - + D ´ - + D ´ - 1 4 7 1 10 [ ( 100) ( 100) ( 100)] D D D D 2 å ... 3019 / x x x x W m = = Example 3-5 Video.edhole.com
  • 52. CUMT HEAT TRANSFER LECTURE Example 3-5 The heat flow out the right face is å q h A T T = ´ ´ ( - ) 2 ¥ = ´ D y ´ T - + D y ´ T - + D y ´ T - = = 10 [ ( 100) ( 100) ( 100)] 3 6 9 2 W m ... 1214.6 / The heat flow out the bottom face is å q h A T T = ´ ´ ( - ) 3 ¥ = ´ D ´ - + D ´ - + D ´ - = = y T y T y T W m 10 [ ( 100) ( 100) ( 100)] 7 8 9 2 ... 600.7 / The total heat flow out is 1 2 3 ... 4834.3 / out q = q + q + q = = W m 4843.4 / in <q = W m Video.edhole.com
  • 53. 3-6 Numerical Formulation in Terms of Resistance Elements CUMT HEAT TRANSFER LECTURE Thermal balance — the net heat input to node i must be zero T - T +å = j i 0 i j i j q R qi — heat generation, radiation, etc. i — solving node j — adjoining node Video.edhole.com
  • 54. 3-6 Numerical Formulation in Terms of Resistance Elements CUMT HEAT TRANSFER LECTURE R = D x kA T - T +å = j i 0 q i R j i j T - T T - T T - T T - T m - 1,n m,n + m + 1,n m,n + m,n - 1 m,n + m,n + 1 m,n = 0 R R R R m m n n - + - + 1, 1, , 1 , 1 , 4 0 m n m n m n m n m n T T T T T + - + - + + + - = 1 m m n n R R R R - + - + k = = = = so Video.edhole.com
  • 55. CUMT HEAT TRANSFER LECTURE 3-7 Gauss-Seidel Iteration T - T +å = j i 0 i j i j q R q T R ( / ) (1/ ) i j i j j i i j j T R + = å å Steps Assumed initial set of values for Ti ; Calculated Ti according to the equation ; —using the most recent values of the Ti Repeated the process until converged. Video.edhole.com
  • 56. 3-7 Gauss-Seidel Iteration + e - £ e =10-3~10-6 CUMT HEAT TRANSFER LECTURE Convergence Criterion T T i n i n i(n 1) i(n) T T d + - £ ( 1) ( ) i n ( ) T Biot number Bi = h D x k Video.edhole.com
  • 57. Apply the Gauss-Seidel technique to obtain the nodal temperature for the four nodes in the figure. [Solution] All the connection resistance between the nodes are equal, that is CUMT HEAT TRANSFER LECTURE Example 3-6 R = D x = 1 k D y k Therefore, we have å å å å å å Video.edhole.com q + T R q + k T k T ( / ) ( ) ( ) (1/ ) ( ) ( ) i j i j i j j j j j j j i = = = i j j j j j j T R k k
  • 58. CUMT HEAT TRANSFER LECTURE Example 3-6 Because each node has four resistance connected to it and k is assumed constant, so åk = 4 k 1 j j T = åT i 4 j j Video.edhole.com
  • 59. CUMT HEAT TRANSFER LECTURE 3-8 Accuracy Consideration Truncation Error — Influenced by difference scheme Discrete Error — Influenced by truncation error & △x Round-off Error — Influenced by △x Video.edhole.com
  • 60. CUMT HEAT TRANSFER LECTURE Summary (1)Numerical Method Solving Zone Nodal equations thermal balance method — Interior & boundary point Algebraic equations q T R Gauss-Seidel iteration ( / ) (1/ ) i j i j j i i j j T R + = å å Video.edhole.com
  • 61. CUMT HEAT TRANSFER LECTURE Summary (2)Resistance Forms T - T +å = j i 0 i j i j q R (3)Convergence Convergence Criterion i(n 1) i(n) T T d + - £ i(n 1) i(n) T T d + - £ Video.edhole.com
  • 62. CUMT HEAT TRANSFER LECTURE Summary (4)Accuracy Truncation Error Discrete Error Round-off Error Important conceptions Nodal equations — thermal balance method Calculated temperature & heat flow Convergence criterion How to improve accuracy Video.edhole.com
  • 63. CUMT HEAT TRANSFER LECTURE Exercises Exercises: 3-16, 3-24, 3-48, 3-59 Video.edhole.com