Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Fourth Year
Aircraft Design
Report: Solution to Homework1
Report No: 1 Date: 18/3/2013
Submitted to: Dr. Mohammad Tawfik
Name
 Mohammad Tawfik Eraky
‫عراقي‬ ‫أحمد‬ ‫توفيق‬ ‫محمد‬
2013/2014
Pb.1
Using MATLAB code to get the stresses as functions of strains
Script:
clc;clear;close all;
syms v alpha_t eps_x eps_y eps_z I
A=[1 -v -v; -v 1 -v ;-v -v 1 ];
I=inv(A);
Sigma=I*[eps_x-alpha_t ;eps_y-alpha_t;eps_z-alpha_t];
disp(Sigma);
[
𝜎𝑥
𝜎𝑦
𝜎𝑧
] = 𝐸.
[
𝛼. 𝑇 − 𝜖 𝑥 +
𝜐(𝛼. 𝑇 + 𝜖 𝑥 − 𝜖 𝑦 − 𝜖 𝑧)
(2𝜐 − 1)(𝜐 + 1)
𝛼. 𝑇 − 𝜖 𝑦 +
𝜐(𝛼. 𝑇 + 𝜖 𝑦 − 𝜖 𝑥 − 𝜖 𝑧)
(2𝜐 − 1)(𝜐 + 1)
𝛼. 𝑇 − 𝜖 𝑧 +
𝜐(𝛼. 𝑇 + 𝜖 𝑧 − 𝜖 𝑥 − 𝜖 𝑦)
(2𝜐 − 1)(𝜐 + 1) ]
Pb.2
Static equilibrium ∑𝐹𝑋 = 0 → 𝐹𝐴 + 𝐹𝐵 = 0
𝛿 𝑐1 + 𝛿 𝑐2 = 0 → 𝐼
𝛿 𝑐1 =
−𝜎.𝑙
𝐸
=
−𝑃.𝐿
𝐸𝐴
=
−16∗300
200∗
𝜋
4
∗152
= −0.135 (𝑚𝑚) ⟶ 1
𝛿 𝑐2 =
𝜎.𝑙
𝐸
=
𝐹 𝐶.𝑙
𝐸𝐴
=
𝐹 𝐶∗1000
200∗
𝜋
4
∗152
→ 2
 By equaling first and second equation we got
𝐹𝐶 = 4.8 𝐾𝑁 , 𝐹𝐴 = 11.2 𝐾𝑁
 Deflection at point (B)
𝛿 𝐵1 = −0.135 𝑚𝑚
𝛿 𝐵2 =
4.8 ∗ 300
200 ∗
𝜋
4
∗ 152
= 0.04 𝑚𝑚
𝛿 𝐵 = 𝛿 𝐵1 + 𝛿 𝐵2
𝛿 𝐵 = 0.094 𝑚𝑚
Pb.3
𝛿 𝑇 + 𝛿 𝑅 = 0 → 𝐼
𝛿𝑡 = 𝛼 𝑆. 𝑙 𝑆. 𝑇𝑆 + 𝛼 𝐵. 𝑙 𝐵. 𝑇𝐵
𝛿𝑡 = 12 ∗ 10−6
∗ 0.3 ∗ 10 + 21 ∗ 10−6
∗ 0.3 ∗ 10 → 1
𝛿𝑡 = 0.099 (𝑚𝑚)
𝛿 𝑅 = ∑
−𝐹. 𝑙
𝐸. 𝐴
=
−𝐹 ∗ 0.3
200 ∗ 10−6 ∗ 200 ∗ 109
+
−𝐹 ∗ 0.3
200 ∗ 10−6 ∗ 200 ∗ 109
→ 2
 Substituting equations 1 , 2 into equation I
F = 6.988 KN
 Deflection at joint
𝛿𝐽 = 21 ∗ 10−6
∗ 10 ∗ 0.3 −
7 ∗ 103
∗ 0.3
200 ∗ 10−6 ∗ 200 ∗ 109
𝛿𝐽 = 0.01 𝑚𝑚

More Related Content

Homework1

  • 1. Fourth Year Aircraft Design Report: Solution to Homework1 Report No: 1 Date: 18/3/2013 Submitted to: Dr. Mohammad Tawfik Name  Mohammad Tawfik Eraky ‫عراقي‬ ‫أحمد‬ ‫توفيق‬ ‫محمد‬ 2013/2014
  • 2. Pb.1 Using MATLAB code to get the stresses as functions of strains Script: clc;clear;close all; syms v alpha_t eps_x eps_y eps_z I A=[1 -v -v; -v 1 -v ;-v -v 1 ]; I=inv(A); Sigma=I*[eps_x-alpha_t ;eps_y-alpha_t;eps_z-alpha_t]; disp(Sigma); [ 𝜎𝑥 𝜎𝑦 𝜎𝑧 ] = 𝐸. [ 𝛼. 𝑇 − 𝜖 𝑥 + 𝜐(𝛼. 𝑇 + 𝜖 𝑥 − 𝜖 𝑦 − 𝜖 𝑧) (2𝜐 − 1)(𝜐 + 1) 𝛼. 𝑇 − 𝜖 𝑦 + 𝜐(𝛼. 𝑇 + 𝜖 𝑦 − 𝜖 𝑥 − 𝜖 𝑧) (2𝜐 − 1)(𝜐 + 1) 𝛼. 𝑇 − 𝜖 𝑧 + 𝜐(𝛼. 𝑇 + 𝜖 𝑧 − 𝜖 𝑥 − 𝜖 𝑦) (2𝜐 − 1)(𝜐 + 1) ]
  • 3. Pb.2 Static equilibrium ∑𝐹𝑋 = 0 → 𝐹𝐴 + 𝐹𝐵 = 0 𝛿 𝑐1 + 𝛿 𝑐2 = 0 → 𝐼 𝛿 𝑐1 = −𝜎.𝑙 𝐸 = −𝑃.𝐿 𝐸𝐴 = −16∗300 200∗ 𝜋 4 ∗152 = −0.135 (𝑚𝑚) ⟶ 1 𝛿 𝑐2 = 𝜎.𝑙 𝐸 = 𝐹 𝐶.𝑙 𝐸𝐴 = 𝐹 𝐶∗1000 200∗ 𝜋 4 ∗152 → 2  By equaling first and second equation we got 𝐹𝐶 = 4.8 𝐾𝑁 , 𝐹𝐴 = 11.2 𝐾𝑁  Deflection at point (B) 𝛿 𝐵1 = −0.135 𝑚𝑚 𝛿 𝐵2 = 4.8 ∗ 300 200 ∗ 𝜋 4 ∗ 152 = 0.04 𝑚𝑚 𝛿 𝐵 = 𝛿 𝐵1 + 𝛿 𝐵2 𝛿 𝐵 = 0.094 𝑚𝑚
  • 4. Pb.3 𝛿 𝑇 + 𝛿 𝑅 = 0 → 𝐼 𝛿𝑡 = 𝛼 𝑆. 𝑙 𝑆. 𝑇𝑆 + 𝛼 𝐵. 𝑙 𝐵. 𝑇𝐵 𝛿𝑡 = 12 ∗ 10−6 ∗ 0.3 ∗ 10 + 21 ∗ 10−6 ∗ 0.3 ∗ 10 → 1 𝛿𝑡 = 0.099 (𝑚𝑚) 𝛿 𝑅 = ∑ −𝐹. 𝑙 𝐸. 𝐴 = −𝐹 ∗ 0.3 200 ∗ 10−6 ∗ 200 ∗ 109 + −𝐹 ∗ 0.3 200 ∗ 10−6 ∗ 200 ∗ 109 → 2  Substituting equations 1 , 2 into equation I F = 6.988 KN  Deflection at joint 𝛿𝐽 = 21 ∗ 10−6 ∗ 10 ∗ 0.3 − 7 ∗ 103 ∗ 0.3 200 ∗ 10−6 ∗ 200 ∗ 109 𝛿𝐽 = 0.01 𝑚𝑚