Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
Singular Value Decomposition -
Applications in Image Processing
1
By-
Chithaj Mallikarjun Niteesh S Shanbog
PES1201702412 PES1201702421
MTech, EEE MTech, EEE
1. Singular value decomposition
Consider a (real) matrix
A ∈ Rn×m, r = rank (A) ≤ min {n, m} .
A has
m. columns of length n ,
n. rows of length m ,
r is the maximal number of linearly independent columns
(rows)of A .
2
3
There exists an S V D decomposition of A in the form
A = U Σ V T ,
where U = [u1, . . . , un] ∈ Rn×n, V = [v1, . . . , vm] ∈ Rm×m are orthogo-
nal matrices, and
Singular value decomposition – the matrices:
A U  VT
{ui} i = 1,...,n
{vi} i = 1,...,m
{σi } i=1,...,r
4
are left singular vectors (columns of U ),
are right singular vectors (columns of V ),
are singular values of A.
5
T h e S V D gives us:
span (u1, . . . , ur) ≡ range (A ) ⊂ Rn,
span (vr+1, . . . , vm) ≡ ker ( A ) ⊂ Rm,
span (v1, . . . , vr) ≡ range ( A T ) ⊂ Rm,
span (ur+1, . . . , un) ≡ ker ( A T ) ⊂ Rn,
Singular value decomposition – the subspaces:
v1
v2
...
vr
u1
u2
...
ur
vr+1
...
vm
ur+1
...
un
1
2
r
}
}0
0
AT
A
range(A)
ker(AT
)
ker(A)
range(A )T
Rn
Rm
6
7
T h e outer product (dyadic) form:
We can rewrite A as a sum of rank-one matricesin the dyadic form
Matrix A as a sum of rank-one matrices:
A
A1
+ A2
+ ...
+ Ar -1
+ Ar
8
r
A  Ai
i = 1
SVD reveals the dominating information encoded in a matrix. The
first terms are the “ m o s t ” important.
Image compression
Application - image compression
Grayscale image =matrix; each entry represents a pixel brightness.
10
Grayscale image: scale0 , . . . , 255 from black to white
Colored image: 3 matrices for Red, Green and Blue brightness
values
11
12
Memory required to store:
An uncompressed image of size (m × n):mn values
SVD approximation:k(m + n + 1) values
Other applications:
• Computer Tomography
( C T ) ;
• Magnetic Resonance;
• Seismology;
• Crystallography;
• Material Sciences;
• Image De blurring
13
Thank You!

More Related Content

Image compression

  • 1. Singular Value Decomposition - Applications in Image Processing 1 By- Chithaj Mallikarjun Niteesh S Shanbog PES1201702412 PES1201702421 MTech, EEE MTech, EEE
  • 2. 1. Singular value decomposition Consider a (real) matrix A ∈ Rn×m, r = rank (A) ≤ min {n, m} . A has m. columns of length n , n. rows of length m , r is the maximal number of linearly independent columns (rows)of A . 2
  • 3. 3 There exists an S V D decomposition of A in the form A = U Σ V T , where U = [u1, . . . , un] ∈ Rn×n, V = [v1, . . . , vm] ∈ Rm×m are orthogo- nal matrices, and
  • 4. Singular value decomposition – the matrices: A U  VT {ui} i = 1,...,n {vi} i = 1,...,m {σi } i=1,...,r 4 are left singular vectors (columns of U ), are right singular vectors (columns of V ), are singular values of A.
  • 5. 5 T h e S V D gives us: span (u1, . . . , ur) ≡ range (A ) ⊂ Rn, span (vr+1, . . . , vm) ≡ ker ( A ) ⊂ Rm, span (v1, . . . , vr) ≡ range ( A T ) ⊂ Rm, span (ur+1, . . . , un) ≡ ker ( A T ) ⊂ Rn,
  • 6. Singular value decomposition – the subspaces: v1 v2 ... vr u1 u2 ... ur vr+1 ... vm ur+1 ... un 1 2 r } }0 0 AT A range(A) ker(AT ) ker(A) range(A )T Rn Rm 6
  • 7. 7 T h e outer product (dyadic) form: We can rewrite A as a sum of rank-one matricesin the dyadic form
  • 8. Matrix A as a sum of rank-one matrices: A A1 + A2 + ... + Ar -1 + Ar 8 r A  Ai i = 1 SVD reveals the dominating information encoded in a matrix. The first terms are the “ m o s t ” important.
  • 10. Application - image compression Grayscale image =matrix; each entry represents a pixel brightness. 10
  • 11. Grayscale image: scale0 , . . . , 255 from black to white Colored image: 3 matrices for Red, Green and Blue brightness values 11
  • 12. 12 Memory required to store: An uncompressed image of size (m × n):mn values SVD approximation:k(m + n + 1) values
  • 13. Other applications: • Computer Tomography ( C T ) ; • Magnetic Resonance; • Seismology; • Crystallography; • Material Sciences; • Image De blurring 13