The document discusses interval position analysis (IPA), a method for analyzing DNA and RNA sequences. IPA calculates characteristics such as V, G, and g values based on the distances between similar elements in a sequence. The values of IPA characteristics are sensitive to the order of elements in a sequence. IPA can be used to construct phylogenetic trees and analyze local profiles of RNA sequences. Heap's law and rank distribution models are also discussed in relation to evaluating DNA segmentation.
1 of 10
More Related Content
IPA for DNA analysis
1. Interval position analysis (IPA)
Common order
g=1.0308 ACCTTCATCCCCAACAAC
CACCACCATTACCACCAT
g=1.0462
g=1.0586 CACCACCATTACCACCTA
H=1.4591
IPA characteristics' values sensitive to the order of
elements in contrast to the characteristics of
Information theory (Claude Shannon)
2. Interval position analysis (IPA)
Special order
CT AGCT AGCT AGCT AGCT AGCT AGCT AGCT AG
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
H=2
g≈2
L→∞
g→H
If the special order of items in the sequence the values
of the characteristics of the IPA are approximately equal
to values of simular characteristics in Information theory
(Claude Shannon)
6. Local g profile
Local g profiles for 3 different organisms (Ribosomal RNA)
RNA length ≈ 1800
CACCACCATTACCACCAT window size = 100
step = 2 nucleotide
7. Evaluation of DNA segmentation based on the law
Heaps
Gnomic: A dictionary of genetic codes Pareto distribution http://goo.gl/PWu8B
Trifonov E, Brendel, V http://goo.gl/dZxJo Zipf’s Law http://goo.gl/Sjeum
Bradford’s law http://goo.gl/bdNjG
Heaps law http://goo.gl/u6H2F
CACCACCATTACCACCAT
9. Interval position analysis (IPA)
IPA characteristic based on distance between simular elements
N M M N V M V V N M N V
A L L A B L B B A L A B
F G G F H G H H F G F H
1 2 2 1 3 2 3 3 1 2 1 3
1 - - 1 - - - - 1 - 1 -
∆11 ∆12 ∆13 ∆14
10. Interval position analysis (IPA)
IPA characteristics
nj
m
V j =∏ Δ ij V =∏ V j
i=1
j=1
nj m nj
G j =∑ log 2 Δ ij G=∑ ∑ log 2 Δ ij
i =1 j =1 i=1
nj m
1 nj
g j = ∑ log Δ ij g =∑ log Δ gj
n j i=1 j=1 n
r= Δ g / D