Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
SlideShare a Scribd company logo
DIFFERENTIATION OF
TRIGONOMETRIC
FUNCTIONS
TRANSCENDENTAL FUNCTIONS
Kinds of transcendental functions:
1.logarithmic and exponential functions
2.trigonometric and inverse trigonometric
functions
3.hyperbolic and inverse hyperbolic functions
Note:
Each pair of functions above is an inverse to
each other.
The TRIGONOMETRIC FUNCTIONS
.
xtan
1
xsin
xcos
xcot.4
xcot
1
xcos
xsin
xtan.3
xcos
1
xsec
xsec
1
xcos2.
xsin
1
xcsc
xcsc
1
xsin1.
IdentitiesciprocalRe.A
IdentitiesricTrigonomet
:callRe
==
==
=⇔=
=⇔=
( )
( )
( )
ytanxtan1
ytanxtan
yxtan.3
ysinxsinycosxcosyxcos2.
ysinxcosycosxsinyxsin1.
AnglesTwoofDifferenceandSum.B


±
=±
=±
±=±
xtan1
xtan2
x2tan.3
1xcos2
xsin21
xsinxcosx2cos2.
2sinxcosxx2sin1.
FormulasAngleDouble.C
2
2
2
22
−
=
−=
−=
−=
=
xcscxcot1.3
xsecxtan1.2
1xcosxsin.1
IdentitiesSquared.D
22
22
22
=+
=+
=+
DIFFERENTIATION FORMULA
Derivative of Trigonometric Function
For the differentiation formulas of the trigonometric
functions, all you need to know is the differentiation
formulas of sin u and cos u. Using these formulas
and the differentiation formulas of the algebraic
functions, the differentiation formulas of the
remaining functions, that is, tan u, cot u, sec u and
csc u may be obtained.
( )
( )
( )
( )
dx
du
usinucos
dx
d
dx
du
ucosusin
dx
d
−=
=
=
=
xfuwhereucosofDerivative
xfuwhereusinofDerivative
( )
( ) 





=
=
xcos
xsin
dx
d
xtan
dx
d
xfuwhereutanofDerivative
( )
( ) ( ) ( ) ( )
( )2
cosx
xcos
dx
d
sinxxsin
dx
d
cosx
xtan
dx
d
quotient,ofderivativegsinU
−
=
( )( ) ( )( )
xcos
xsinsinxcosxcosx
2
−−
=
xcos
1
xcos
xsinxcos
22
22
=
+
=
( ) xsecxtan
dx
d 2
=
( )
dx
du
usecutan
dx
d
Therefore 2
=
( )
( ) 





=
=
xtan
1
dx
d
xcot
dx
d
xfuwhereucotofDerivative
( )
( ) ( )
( )
( )
( )2
2
2
tanx
xsec10
tanx
xtan
dx
d
10
xtan
dx
d
quotient,ofderivativegsinU
−
=
−
=
xcsc
xsin
1
xcos
xsin
xcos
1
xtan
xsec 2
2
2
2
2
2
2
−=
−
=
−
=
−
=
( ) xcsc-xcot
dx
d 2
=
( )
dx
du
ucsc-ucot
dx
d
Therefore 2
=
( )
( ) 





=
=
xcos
1
dx
d
xsec
dx
d
xfuwhereusecofDerivative
( )
( ) ( )
( )
( )( )
( )22
cosx
xsin10
cosx
xcos
dx
d
10
xtan
dx
d
quotient,ofderivativegsinU
−−
=
−
=
xsecxtan
xcos
1
xcos
xsin
xcos
xsin
2
=⋅=
+
=
( ) xsecxtanxsec
dx
d
=
( )
dx
du
usecutanusec
dx
d
Therefore =
( )
( ) 





=
=
xsin
1
dx
d
xcsc
dx
d
xfuwhereucscofDerivative
( )
( ) ( )
( )
( )( )
( )22
xsin
xcos10
xsin
xsin
dx
d
10
xcsc
dx
d
quotient,ofderivativegsinU
−
=
−
=
xcscxcot
xsin
1
xsin
xcos
xsin
xcos
2
−=⋅
−
=
−
=
( ) xcscxcotxcsc
dx
d
−=
( )
dx
du
ucscucot-ucsc
dx
d
Therefore =
( )
dx
du
ucosusin
dx
d
=
( )
dx
du
usinucos
dx
d
−=
( )
dx
du
usecutan
dx
d 2
=
( )
dx
du
ucscucot
dx
d 2
−=
( )
dx
du
usecutanusec
dx
d
=
( )
dx
du
ucscucotucsc
dx
d
−=
If u is a differentiable function of x, then the
following are differentiation formulas of the
trigonometric functions
SUMMARY:
A. Find the derivative of each of the following
functions and simplify the result:
( ) x3sin2xf.1 =
( ) xsin
exg.2 =
( ) ( )22
x31cosxh.3 −=
( ) ( )( )
x3cos6
3x3cos2x'f
=
=
( ) xsin
dx
d
ex'g xsin
=
( ) ( )[ ]22
x31cosxh −=
x2
1
xcose xsin
⋅⋅=
( )
x2
xcosex
x
x
x2
xcose
x'g
xsinxsin
⋅
=•
⋅
=
( ) ( )[ ] ( )[ ]( )x6x31sinx31cos2x'h 22
−−−−=
( )[ ] ( )[ ]22
x31sinx31cos2x6 −−=
2sinxcosx2xsinfrom =
( ) ( )2
x312sinx6x'h −=
3x4cos3x4sin3y.4 =
( )( )( ) ( )( )( )[ ]233233
x12x4cosx4cosx12x4sinx4sin3'y +−=
xsinxcos2xcosfrom 22
−=
( )[ ]32
x42cosx36'y =
32
x8cosx36'y =
( ) x
2
x
tan2xf.5 −=
( ) 1
2
1
2
x
sec2x'f 2
−











=
( ) 1
2
x
secx'f 2
−=
( )
2
x
tanx'f 2
=
( )
x1
x
tan
3
logxh.6
−
=
( ) ( )( ) ( )
( ) 





−
−−−
⋅
−
⋅⋅
−
= 2
2
3
x1
1x1x1
x1
x
secelog
x1
x
tan
1
x'h
( ) ( )( )
( )
x1
x
cos
1
x1
x
sin
x1
x
cos
x1
xx1elog
x'h
2
2
3
−
⋅
−
−⋅
−
+−
=
( )
( ) 2
2
x1
x
cos
x1
x
sin
1
x1
elog
x'h 2
3
⋅
−−
⋅
−
=
( )
( )
( )
x1
x
cos
x1
x
sin2
1
x1
elog2
x'h 2
3
−−
⋅
−
=
( )
( )
( )
x1
x2
sin
1
x1
elog2
x'h 2
3
−
⋅
−
= ( )
( )
( ) 





−−
=⇒
x1
x2
csc
x1
elog2
x'h 2
3
( ) x2cos
x2secy.7 =
( )
( )x2seclnx2cosyln
x2seclnyln
sidesbothonlnApply
x2cos
=
=
( ) ( )( )( ) ( )[ ][ ]( )2x2sinx2secln2x2tanx2sec
x2sec
1
x2cos'y
y
1
ationdifferenticlogarithmiBy
−+



=⋅
[ ] x2seclnx2sin2
x2cos
x2sin2
x2cos'y
y
1
−





=⋅
( )[ ]x2secln1x2sin2 −=
( )[ ] yx2secln1x2sin2'y ⋅−=
( )( )( ) x2cos
x2secx2secln1x2sin2'y −=
( )
xcot1
xcot2
xh.8 2
+
=
( ) ( ) ( )( )[ ] ( )( ) ( )( )[ ]
( )22
222
xcot1
1xcscxcot2xcot21xcsc2xcot1
x'h
+
−−−+
=
( )
( )
[ ]xcot1xcot2
xcot1
xcsc2
x'h 22
22
2
−−
+
=
( )
[ ]1xcot
xcsc
xcsc2 2
22
2
−=
( ) ( ) ( ) 





−=
−
= 1
xsin
xcos
xsin2
xcsc
1xcot2
x'h 2
2
2
2
2
( ) ( ) 




 −
=
xsin
xsinxcos
xsin2x'h 2
22
2
( ) x2cos2x'h =
( ) ( )1xcscxF.9 3
+=
( ) ( ) ( )[ ]
( )1xcsc2
x31xcot1xcsc
x'F
3
233
+
++−
=
( )
( ) ( )[ ] ( )
( )1xcsc2
1xcsc1xcot1xcscx3
x'F 3
3332
+
+++
−=
( ) ( ) ( )1xcsc1xcotx
2
3
x'F 332
+



+−=
Find the derivative and simplify the result.
( ) ( )
3
x4
5sinlnxh.1 =
( ) ( )3 2
xlncosxf.2 =
( )
x4cos2
x4sin
xg.3
+
=
( ) x2cosx4sin2x2sinxcos2xF.4 −=
xcos31
sin
y.5
3
−
=
( ) ( ) xtan
xsinxF. =6
( )yxtany.7 +=
( ) 2
2
x1
x2cot
xF.8
+
=
0xyxycot.9 =+
EXERCISES:
0ycscxsec.10 22
=+

More Related Content

Lesson 1 derivative of trigonometric functions

  • 2. TRANSCENDENTAL FUNCTIONS Kinds of transcendental functions: 1.logarithmic and exponential functions 2.trigonometric and inverse trigonometric functions 3.hyperbolic and inverse hyperbolic functions Note: Each pair of functions above is an inverse to each other.
  • 3. The TRIGONOMETRIC FUNCTIONS . xtan 1 xsin xcos xcot.4 xcot 1 xcos xsin xtan.3 xcos 1 xsec xsec 1 xcos2. xsin 1 xcsc xcsc 1 xsin1. IdentitiesciprocalRe.A IdentitiesricTrigonomet :callRe == == =⇔= =⇔= ( ) ( ) ( ) ytanxtan1 ytanxtan yxtan.3 ysinxsinycosxcosyxcos2. ysinxcosycosxsinyxsin1. AnglesTwoofDifferenceandSum.B   ± =± =± ±=± xtan1 xtan2 x2tan.3 1xcos2 xsin21 xsinxcosx2cos2. 2sinxcosxx2sin1. FormulasAngleDouble.C 2 2 2 22 − = −= −= −= = xcscxcot1.3 xsecxtan1.2 1xcosxsin.1 IdentitiesSquared.D 22 22 22 =+ =+ =+
  • 4. DIFFERENTIATION FORMULA Derivative of Trigonometric Function For the differentiation formulas of the trigonometric functions, all you need to know is the differentiation formulas of sin u and cos u. Using these formulas and the differentiation formulas of the algebraic functions, the differentiation formulas of the remaining functions, that is, tan u, cot u, sec u and csc u may be obtained. ( ) ( ) ( ) ( ) dx du usinucos dx d dx du ucosusin dx d −= = = = xfuwhereucosofDerivative xfuwhereusinofDerivative
  • 5. ( ) ( )       = = xcos xsin dx d xtan dx d xfuwhereutanofDerivative ( ) ( ) ( ) ( ) ( ) ( )2 cosx xcos dx d sinxxsin dx d cosx xtan dx d quotient,ofderivativegsinU − = ( )( ) ( )( ) xcos xsinsinxcosxcosx 2 −− = xcos 1 xcos xsinxcos 22 22 = + = ( ) xsecxtan dx d 2 = ( ) dx du usecutan dx d Therefore 2 =
  • 6. ( ) ( )       = = xtan 1 dx d xcot dx d xfuwhereucotofDerivative ( ) ( ) ( ) ( ) ( ) ( )2 2 2 tanx xsec10 tanx xtan dx d 10 xtan dx d quotient,ofderivativegsinU − = − = xcsc xsin 1 xcos xsin xcos 1 xtan xsec 2 2 2 2 2 2 2 −= − = − = − = ( ) xcsc-xcot dx d 2 = ( ) dx du ucsc-ucot dx d Therefore 2 =
  • 7. ( ) ( )       = = xcos 1 dx d xsec dx d xfuwhereusecofDerivative ( ) ( ) ( ) ( ) ( )( ) ( )22 cosx xsin10 cosx xcos dx d 10 xtan dx d quotient,ofderivativegsinU −− = − = xsecxtan xcos 1 xcos xsin xcos xsin 2 =⋅= + = ( ) xsecxtanxsec dx d = ( ) dx du usecutanusec dx d Therefore =
  • 8. ( ) ( )       = = xsin 1 dx d xcsc dx d xfuwhereucscofDerivative ( ) ( ) ( ) ( ) ( )( ) ( )22 xsin xcos10 xsin xsin dx d 10 xcsc dx d quotient,ofderivativegsinU − = − = xcscxcot xsin 1 xsin xcos xsin xcos 2 −=⋅ − = − = ( ) xcscxcotxcsc dx d −= ( ) dx du ucscucot-ucsc dx d Therefore =
  • 9. ( ) dx du ucosusin dx d = ( ) dx du usinucos dx d −= ( ) dx du usecutan dx d 2 = ( ) dx du ucscucot dx d 2 −= ( ) dx du usecutanusec dx d = ( ) dx du ucscucotucsc dx d −= If u is a differentiable function of x, then the following are differentiation formulas of the trigonometric functions SUMMARY:
  • 10. A. Find the derivative of each of the following functions and simplify the result: ( ) x3sin2xf.1 = ( ) xsin exg.2 = ( ) ( )22 x31cosxh.3 −= ( ) ( )( ) x3cos6 3x3cos2x'f = = ( ) xsin dx d ex'g xsin = ( ) ( )[ ]22 x31cosxh −= x2 1 xcose xsin ⋅⋅= ( ) x2 xcosex x x x2 xcose x'g xsinxsin ⋅ =• ⋅ = ( ) ( )[ ] ( )[ ]( )x6x31sinx31cos2x'h 22 −−−−= ( )[ ] ( )[ ]22 x31sinx31cos2x6 −−= 2sinxcosx2xsinfrom = ( ) ( )2 x312sinx6x'h −=
  • 11. 3x4cos3x4sin3y.4 = ( )( )( ) ( )( )( )[ ]233233 x12x4cosx4cosx12x4sinx4sin3'y +−= xsinxcos2xcosfrom 22 −= ( )[ ]32 x42cosx36'y = 32 x8cosx36'y =
  • 12. ( ) x 2 x tan2xf.5 −= ( ) 1 2 1 2 x sec2x'f 2 −            = ( ) 1 2 x secx'f 2 −= ( ) 2 x tanx'f 2 =
  • 13. ( ) x1 x tan 3 logxh.6 − = ( ) ( )( ) ( ) ( )       − −−− ⋅ − ⋅⋅ − = 2 2 3 x1 1x1x1 x1 x secelog x1 x tan 1 x'h ( ) ( )( ) ( ) x1 x cos 1 x1 x sin x1 x cos x1 xx1elog x'h 2 2 3 − ⋅ − −⋅ − +− = ( ) ( ) 2 2 x1 x cos x1 x sin 1 x1 elog x'h 2 3 ⋅ −− ⋅ − = ( ) ( ) ( ) x1 x cos x1 x sin2 1 x1 elog2 x'h 2 3 −− ⋅ − = ( ) ( ) ( ) x1 x2 sin 1 x1 elog2 x'h 2 3 − ⋅ − = ( ) ( ) ( )       −− =⇒ x1 x2 csc x1 elog2 x'h 2 3
  • 14. ( ) x2cos x2secy.7 = ( ) ( )x2seclnx2cosyln x2seclnyln sidesbothonlnApply x2cos = = ( ) ( )( )( ) ( )[ ][ ]( )2x2sinx2secln2x2tanx2sec x2sec 1 x2cos'y y 1 ationdifferenticlogarithmiBy −+    =⋅ [ ] x2seclnx2sin2 x2cos x2sin2 x2cos'y y 1 −      =⋅ ( )[ ]x2secln1x2sin2 −= ( )[ ] yx2secln1x2sin2'y ⋅−= ( )( )( ) x2cos x2secx2secln1x2sin2'y −=
  • 15. ( ) xcot1 xcot2 xh.8 2 + = ( ) ( ) ( )( )[ ] ( )( ) ( )( )[ ] ( )22 222 xcot1 1xcscxcot2xcot21xcsc2xcot1 x'h + −−−+ = ( ) ( ) [ ]xcot1xcot2 xcot1 xcsc2 x'h 22 22 2 −− + = ( ) [ ]1xcot xcsc xcsc2 2 22 2 −= ( ) ( ) ( )       −= − = 1 xsin xcos xsin2 xcsc 1xcot2 x'h 2 2 2 2 2 ( ) ( )       − = xsin xsinxcos xsin2x'h 2 22 2 ( ) x2cos2x'h =
  • 16. ( ) ( )1xcscxF.9 3 += ( ) ( ) ( )[ ] ( )1xcsc2 x31xcot1xcsc x'F 3 233 + ++− = ( ) ( ) ( )[ ] ( ) ( )1xcsc2 1xcsc1xcot1xcscx3 x'F 3 3332 + +++ −= ( ) ( ) ( )1xcsc1xcotx 2 3 x'F 332 +    +−=
  • 17. Find the derivative and simplify the result. ( ) ( ) 3 x4 5sinlnxh.1 = ( ) ( )3 2 xlncosxf.2 = ( ) x4cos2 x4sin xg.3 + = ( ) x2cosx4sin2x2sinxcos2xF.4 −= xcos31 sin y.5 3 − = ( ) ( ) xtan xsinxF. =6 ( )yxtany.7 += ( ) 2 2 x1 x2cot xF.8 + = 0xyxycot.9 =+ EXERCISES: 0ycscxsec.10 22 =+